Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(7): 3004-3011, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608872

RESUMO

To evaluate the effect of the implementation of emission reduction measures and the improvement in air quality during the National Traditional Games of Ethnic Minorities in Zhengzhou, a series of online instruments were used to continuously observe air pollutants and components of PM2.5 from August 5 to September 30, 2019. Three cases, including before emission reduction (August 5-24), during emission reduction (August 25 to September 18), and after emission reduction (September 19-30), were classified by the implementation of control measures. The results show that the growing concentration of PM2.5 after the cancellation of emission abatement measures (11.7 µg·m-3) was greater than that during the emission reduction (2.3 µg·m-3) compared to the PM2.5 concentration before emission reduction. This thus indicates that the control measures have a significant effect on reducing particulate matter. The main components of PM2.5 were organic matter, nitrate, ammonium, sulfate, and crustal elements. Compared to the proportion of components in PM2.5 before and during the control periods, organic matter and nitrate increased by 3.9% and 0.9%, respectively, while sulfate, ammonium, and crustal elements decreased by 1.1%, 1.9%, and 2.2%, respectively. The results of source appointment by positive matrix factorization show that secondary sulfate, secondary nitrate, secondary organic aerosols, vehicular emissions, industrial emissions, dust, and coal combustion are the main sources of PM2.5. Emission abatement measures reduced the contributions of primary sources such as dust, coal combustion, and industry by 8.3%, 8.2%, and 8.1%, respectively. In contrast, the contributions of secondary organic and nitrate aerosols increased during the control periods, which suggested that the control measures implemented in Zhengzhou had a weaker emission reduction effect on nitrogen oxide and volatile organic compounds than on primary sources of PM2.5.

2.
Nanotechnology ; 20(5): 055102, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19417333

RESUMO

To reduce the side effects and drug resistance in cancer chemotherapy, we have examined the in vitro efficacy of the combination of paclitaxel (PTX) and doxorubicin (DOX) loaded in nanosized polymeric micelles with glycolipid-like structure, which formed by lipid grafted chitosan. The cytotoxicities of PTX and DOX, either as single agents or in combination, were examined using drug sensitive tumor cells and drug resistant cells. It was found that the 50% inhibition of cellular growth (IC(50)) of PTX and DOX in micelles against drug sensitive cells was lowered about 20-fold and 4-7-fold compared to that of Taxol and DOX solution, respectively. The IC(50) of PTX and DOX in micelles against drug resistant cells was lowered more significantly, and no clear difference was found between drug sensitive and drug resistant cells. The coadministration of PTX and DOX in micelles showed a more conspicuous effect than that of micelles loaded with a single drug. The micelles presented excellent internalization to cancer cells, which results in increased intracellular accumulation of PTX and DOX in its molecular-target site. The coadministration of glycolipid-like micelles loaded with different cytotoxic drugs indicated synergistic effects for drug sensitive cells and drug resistant cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Portadores de Fármacos/química , Glicolipídeos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Humanos , Micelas , Paclitaxel/administração & dosagem , Paclitaxel/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...