Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013647

RESUMO

This study aims to explore the effect of deformation parameters on microstructure evolution during the new two-stage annealing method composed of an aging treatment (AT) and a cooling recrystallization annealing treatment (CRT). Firstly, the hot compressive tests with diverse deformation parameters were finished for an initial aged deformed GH4169 superalloy. Then, the same two-stage annealing method was designed and carried out for the deformed samples. The results show that the deformation parameters mainly affect the grain microstructure during CRT by influencing the content, distribution and morphology of the δ phase after deformation. The reason for this is that there is an equilibrium of the content of the δ phase and Nb atom. When the deformation temperature is high, the complete dissolution behavior of the δ phase nuclei promotes the dispersion distribution of the δ phase with rodlike and needle-like shapes during AT. Thus, the fine and heterogeneous microstructure is obtained after annealing because the recrystallization nucleation is enhanced in those dispersed δ phases during CRT. However, when the retained content of δ phase nuclei is high after deformation, the clusters of intragranular δ phases will form during AT, resulting in the pinning of the motion for dislocation. The elimination of the mixed grain microstructure is slowed down due to the low static recrystallization (SRX) nucleation rate within the deformed grain.

2.
Materials (Basel) ; 14(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361533

RESUMO

This study takes large size samples after hot-upsetting as research objects and aims to investigate the optimization double-stage annealing parameters for improving the mechanical properties of hot-upsetting samples. The double-stage annealing treatments and uniaxial tensile tests for hot-upsetting GH4169 superalloy were finished firstly. Then, the fracture mode was also studied. The results show that the strength of hot-upsetting GH4169 superalloy can be improved by the double-stage annealing treatment, but the effect of annealing parameters on the elongation of GH4169 alloy at high temperature and room temperature is not significant. The fracture mode of annealed samples at high-temperature and room-temperature tensile tests is a mixture of shear fracture and quasi-cleavage fracture while that of hot-upsetting sample is a shear fracture. The macroscopic expressions for the two fracture modes belong to ductile fracture. Moreover, it is also found that the improvement of strength by the double-stage annealing treatment is greater than the single-stage annealing treatment. This is because the homogeneity of grains plays an important role in the improvement of strength for GH4169 superalloy when the average grain size is similar. Based on a comprehensive consideration, the optimal annealing route is determined as 900 °C × 9-12 h(water cooling) + 980 °C × 60 min(water cooling).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...