Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(7): 075101, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752847

RESUMO

This paper proposes a five degrees-of-freedom measurement system for measuring geometric errors of the rotary axis. To align the measured rotary axis with the reference axis, a diode laser is used to represent the rotary axis of the measured rotation stage. Based on the proposed measurement system, a model for separating the position independent geometric errors and position dependent geometric errors of the measured rotary axis from the measured value is established and verified by measurement experiments. The results of measurement experiments repeated for five times show that the measurement uncertainty of the proposed measurement system is less than ±1.6 µm for radial motion, the measurement uncertainty is less than ±1.7 arc sec for tilt motion, and the measurement uncertainty is less than ±1.3 arc sec for angle position.

2.
Sensors (Basel) ; 19(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491908

RESUMO

A robust laser measurement system (LMS), consisting of a sensor head and a detecting part, for simultaneously measuring five-degree-of-freedom (five-DOF) error motions of linear stages, is proposed and characterized. For the purpose of long-travel measurement, all possible error sources that would affect the measurement accuracy are considered. This LMS not only integrates the merits of error compensations for the laser beam drift, beam spot variation, detector sensitivity variation, and non-parallelism of dual-beam that have been resolved by the author's group before, but also eliminates the crosstalk errors among five-DOF error motions in this study. The feasibility and effectiveness of the designed LMS and modified measurement model are experimentally verified using a laboratory-built prototype. The experimental results show that the designed LSM has the capability of simultaneously measuring the five-DOF error motions of a linear stage up to one-meter travel with a linear error accuracy in sub-micrometer and an angular error accuracy in sub-arcsecond after compensation.

3.
Sensors (Basel) ; 19(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252562

RESUMO

The geometric error motions of rotary stages greatly affect the accuracy of constructed machines such as machine tools, measuring instruments, and robots. In this paper, an embedded sensor system for real-time measurement of two radial and three angular error motions of a rotary stage is proposed, which makes use of a rotary encoder with multiple scanning heads to measure the rotational angle and two radial error motions and a miniature autocollimator to measure two tilt angular errors of the axis of rotation. The assembly errors of the grid disc of the encoder and the mirror for autocollimator are also evaluated and compensated. The developed measuring device can be fixed inside the rotary stage. In the experiments, radial error motions of two points on the axis (h = 5 mm and 60 mm) were measured and calibrated with LVDTs, and the data showed that the radial error motions of the axis were less than 20 µm, and the calibration residual errors were less than 2 µm. When intermittent external forces were applied to the stage, the change of the stage's error motion could also be monitored accurately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...