Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1563-1576, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37956407

RESUMO

Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.


Assuntos
Arabidopsis , Arabidopsis/genética , Reprodução , Sinais (Psicologia) , Floema/genética , Regiões Promotoras Genéticas/genética
2.
J Biol Chem ; 298(11): 102438, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049521

RESUMO

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polifosfatos , Metaloproteínas/química , Hidrolases Anidrido Ácido/metabolismo
3.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34706263

RESUMO

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Assuntos
Arabidopsis/metabolismo , Endosperma/metabolismo , Peptídeos/metabolismo , Plântula/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação , Plantas , Sementes/metabolismo
4.
Plant J ; 104(3): 567-580, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985026

RESUMO

The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Endosperma/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
5.
Plant Direct ; 4(8): e00258, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32885135

RESUMO

Vitamin B1 is a family of molecules, the most renowned member of which is diphosphorylated thiamine (TDP)-a coenzyme vital for the activity of key enzymes of energy metabolism. Triphosphorylated thiamine derivatives also exist within this family, specifically thiamine triphosphate (TTP) and adenosine thiamine triphosphate (ATTP). They have been investigated primarily in mammalian cells and are thought to act as metabolic messengers but have not received much attention in plants. In this study, we set out to examine for the presence of these triphosphorylated thiamine derivatives in Arabidopsis. We could find TTP in Arabidopsis under standard growth conditions, but we could not detect ATTP. Interestingly, TTP is found primarily in shoot tissue. Drivers of TTP synthesis are light intensity, the proton motive force, as well as TDP content. In plants, TTP accumulates in the organellar powerhouses, the plastids, and mitochondria. Furthermore, in contrast to other B1 vitamers, there are strong oscillations in tissue levels of TTP levels over diel periods peaking early during the light period. The elevation of TTP levels during the day appears to be coupled to a photosynthesis-driven process. We propose that TTP may signify TDP sufficiency, particularly in the organellar powerhouses, and discuss our findings in relation to its role.

6.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601208

RESUMO

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Assuntos
Receptores Notch/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Drosophila , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/química , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Camundongos , Mutação , Fenótipo , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
7.
Plant J ; 102(3): 507-516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816134

RESUMO

Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.


Assuntos
Polifosfatos/metabolismo , Chlamydomonas/metabolismo , Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
8.
BMC Plant Biol ; 19(1): 464, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684863

RESUMO

BACKGROUND: PDX1.2 has recently been shown to be a regulator of vitamin B6 biosynthesis in plants and is implicated in biotic and abiotic stress resistance. PDX1.2 expression is strongly and rapidly induced by heat stress. Interestingly, PDX1.2 is restricted to eudicota, wherein it behaves as a non-catalytic pseudoenzyme and is suggested to provide an adaptive advantage to this clade. A first report on an Arabidopsis insertion mutant claims that PDX1.2 is indispensable for viability, being essential for embryogenesis. However, a later study using an independent insertion allele suggests that knockout mutants of pdx1.2 are viable. Therefore, the essentiality of PDX1.2 for Arabidopsis viability is a matter of debate. Given the important implications of PDX1.2 in stress responses, it is imperative to clarify if it is essential for plant viability. RESULTS: We have studied the previously reported insertion alleles of PDX1.2, one of which is claimed to be essential for embryogenesis (pdx1.2-1), whereas the other is viable (pdx1.2-2). Our study shows that pdx1.2-1 carries multiple T-DNA insertions, but the T-DNA insertion in PDX1.2 is not responsible for the loss of embryogenesis. By contrast, the pdx1.2-2 allele is an overexpressor of PDX1.2 under standard growth conditions and not a null allele as previously reported. Nonetheless, upregulation of PDX1.2 expression under heat stress is impaired in this mutant line. In wild type Arabidopsis, studies of PDX1.2-YFP fusion proteins show that the protein is enhanced under heat stress conditions. To clarify if PDX1.2 is essential for Arabidopsis viability, we generated several independent mutant lines using the CRISPR-Cas9 gene editing technology. All of these lines are viable and behave similar to wild type under standard growth conditions. Reciprocal crosses of a subset of the CRISPR lines with pdx1.2-1 recovers viability of the latter line and demonstrates that knocking out the functionality of PDX1.2 does not impair embryogenesis. CONCLUSIONS: Gene editing reveals that PDX1.2 is dispensable for Arabidopsis viability and resolves conflicting reports in the literature on its function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas/genética , Mutação com Perda de Função/fisiologia , Fenótipo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Temperatura Alta
9.
Nat Plants ; 5(2): 184-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737513

RESUMO

Eukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes. We could rationalize these puzzling findings by characterizing a uORF in the AtTTM3 locus encoding CELL DIVISION CYCLE PROTEIN 26 (CDC26), an orthologue of the cell cycle regulator. We demonstrate that AtCDC26 is part of the plant anaphase promoting complex/cyclosome (APC/C), regulates accumulation of APC/C target proteins and controls cell division, growth and embryo development. AtCDC26 and AtTTM3 are translated from a single transcript conserved across the plant lineage. While there is no apparent biochemical connection between the two gene products, AtTTM3 coordinates AtCDC26 translation by recruiting the transcript into polysomes. Our work highlights that uORFs may encode functional proteins in plant genomes.


Assuntos
Hidrolases Anidrido Ácido/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiões 5' não Traduzidas , Hidrolases Anidrido Ácido/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fases de Leitura Aberta , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo
10.
Plant Physiol ; 177(3): 1218-1233, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29848749

RESUMO

Mature dry seeds are highly resilient plant structures where the encapsulated embryo is kept protected and dormant to facilitate its ultimate dispersion. Seed viability is heavily dependent on the seed coat's capacity to shield living tissues from mechanical and oxidative stress. In Arabidopsis (Arabidopsis thaliana), the seed coat, also called the testa, arises after the differentiation of maternal ovular integuments during seed development. We recently described a thick cuticle tightly embedded in the mature seed's endosperm cell wall. We show here that it is produced by the maternal inner integument 1 layer and, remarkably, transferred to the developing endosperm. Arabidopsis transparent testa (tt) mutations cause maternally derived seed coat pigmentation defects. TT gene products encode proteins involved in flavonoid metabolism and regulators of seed coat development. tt mutants have abnormally high seed coat permeability, resulting in lower seed viability and dormancy. However, the biochemical basis of this high permeability is not fully understood. We show that the cuticles of developing tt mutant integuments have profound structural defects, which are associated with enhanced cuticle permeability. Genetic analysis indicates that a functional proanthocyanidin synthesis pathway is required to limit cuticle permeability, and our results suggest that proanthocyanidins could be intrinsic components of the cuticle. Together, these results show that the formation of a maternal cuticle is an intrinsic part of the normal integumental differentiation program leading to testa formation and is essential for the seed's physiological properties.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/fisiologia , Sementes/citologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Endosperma/efeitos dos fármacos , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação , Permeabilidade , Plantas Geneticamente Modificadas , Sementes/genética , Cloreto de Tolônio/farmacologia
11.
Nat Commun ; 8: 15285, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585564

RESUMO

During asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to finally be dispatched to pIIa. While the processes of endosomal targeting and asymmetry are starting to be understood, the machineries implicated in the final dispatch to pIIa are unknown. We show that Sara binds the PP1c phosphatase and its regulator Sds22. Sara phosphorylation on three specific sites functions as a switch for the dispatch: if not phosphorylated, endosomes are targeted to the spindle and upon phosphorylation of Sara, endosomes detach from the spindle during pIIa targeting.


Assuntos
Divisão Celular Assimétrica , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Fuso Acromático/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem da Célula , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fosforilação , Ligação Proteica , Subunidades Proteicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 113(30): E4415-22, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27407149

RESUMO

The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fotorreceptores de Plantas/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos da radiação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Mutação , Fotorreceptores de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases , Raios Ultravioleta
13.
Nature ; 528(7581): 280-5, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26659188

RESUMO

During asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila. In flies, this has been generalized to stem cells in the gut and the central nervous system, and, in zebrafish, to neural precursors of the spinal cord. However, the mechanism of asymmetric endosome segregation is not understood. Here we show that the plus-end kinesin motor Klp98A targets Sara endosomes to the central spindle, where they move bidirectionally on an antiparallel array of microtubules. The microtubule depolymerizing kinesin Klp10A and its antagonist Patronin generate central spindle asymmetry. This asymmetric spindle, in turn, polarizes endosome motility, ultimately causing asymmetric endosome dispatch into one daughter cell. We demonstrate this mechanism by inverting the polarity of the central spindle by polar targeting of Patronin using nanobodies (single-domain antibodies). This spindle inversion targets the endosomes to the wrong cell. Our data uncover the molecular and physical mechanism by which organelles localized away from the cellular cortex can be dispatched asymmetrically during asymmetric division.


Assuntos
Divisão Celular Assimétrica/fisiologia , Drosophila melanogaster/citologia , Endossomos/metabolismo , Cinesinas/metabolismo , Fuso Acromático/fisiologia , Animais , Polaridade Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Deleção de Sequência , Anticorpos de Domínio Único
14.
PLoS Genet ; 11(12): e1005708, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26681322

RESUMO

Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.


Assuntos
Germinação/genética , Giberelinas/genética , Lipídeos de Membrana/genética , Dormência de Plantas/genética , Arabidopsis , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
Plant Physiol ; 167(4): 1527-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673777

RESUMO

The biogenesis of the photosynthetic electron transfer chain in the thylakoid membranes requires the concerted expression of genes in the chloroplast and the nucleus. Chloroplast gene expression is subjected to anterograde control by a battery of nucleus-encoded proteins that are imported in the chloroplast, where they mostly intervene at posttranscriptional steps. Using a new genetic screen, we identify a nuclear mutant that is required for expression of the PsaA subunit of photosystem I (PSI) in the chloroplast of Chlamydomonas reinhardtii. This mutant is affected in the stability and translation of psaA messenger RNA. The corresponding gene, TRANSLATION OF psaA1 (TAA1), encodes a large protein with two domains that are thought to mediate RNA binding: an array of octatricopeptide repeats (OPR) and an RNA-binding domain abundant in apicomplexans (RAP) domain. We show that as expected for its function, TAA1 is localized in the chloroplast. It was previously shown that when mixotrophic cultures of C. reinhardtii (which use both photosynthesis and mitochondrial respiration for growth) are shifted to conditions of iron limitation, there is a strong decrease in the accumulation of PSI and that this is rapidly reversed when iron is resupplied. Under these conditions, TAA1 protein is also down-regulated through a posttranscriptional mechanism and rapidly reaccumulates when iron is restored. These observations reveal a concerted regulation of PSI and of TAA1 in response to iron availability.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/metabolismo , Ferro/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo
17.
Curr Biol ; 24(18): 2142-2148, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25155514

RESUMO

Cell fate decision during asymmetric division is mediated by the biased partition of cell fate determinants during mitosis [1-6]. In the case of the asymmetric division of the fly sensory organ precursor cells, directed Notch signaling from pIIb to the pIIa daughter endows pIIa with its distinct fate [1-6]. We have previously shown that Notch/Delta molecules internalized in the mother cell traffic through Sara endosomes and are directed to the pIIa daughter [6]. Here we show that the receptor Notch itself is required during the asymmetric targeting of the Sara endosomes to pIIa. Notch binds Uninflatable, and both traffic together through Sara endosomes, which is essential to direct asymmetric endosomes motility and Notch-dependent cell fate assignation. Our data uncover a part of the core machinery required for the asymmetric motility of a vesicular structure that is essential for the directed dispatch of Notch signaling molecules during asymmetric mitosis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Endossomos/genética , Proteínas de Membrana/genética , Receptores Notch/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Animais , Divisão Celular , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Endossomos/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
J Biol Chem ; 289(21): 14692-706, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706747

RESUMO

Unwanted enzyme side reactions and spontaneous decomposition of metabolites can lead to a build-up of compounds that compete with natural enzyme substrates and must be dealt with for efficient metabolism. It has recently been realized that there are enzymes that process such compounds, formulating the concept of metabolite repair. NADH and NADPH are vital cellular redox cofactors but can form non-functional hydrates (named NAD(P)HX) spontaneously or enzymatically that compete with enzymes dependent on NAD(P)H, impairing normal enzyme function. Here we report on the functional characterization of components of a potential NAD(P)H repair pathway in plants comprising a stereospecific dehydratase (NNRD) and an epimerase (NNRE), the latter being fused to a vitamin B6 salvage enzyme. Through the use of the recombinant proteins, we show that the ATP-dependent NNRD and NNRE act concomitantly to restore NAD(P)HX to NAD(P)H. NNRD behaves as a tetramer and NNRE as a dimer, but the proteins do not physically interact. In vivo fluorescence analysis demonstrates that the proteins are localized to mitochondria and/or plastids, implicating these as the key organelles where this repair is required. Expression analysis indicates that whereas NNRE is present ubiquitously, NNRD is restricted to seeds but appears to be dispensable during the normal Arabidopsis life cycle.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADP/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Western Blotting , Regulação da Expressão Gênica de Plantas , Hidroliases/química , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Redes e Vias Metabólicas/genética , Microscopia Confocal , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , NAD/química , NADP/química , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Estrutura Terciária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
19.
Methods Enzymol ; 534: 301-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359961

RESUMO

The Notch signaling pathway plays important roles in many organisms and developmental contexts. The activities of the Notch receptor and of its ligand Delta are known to be regulated at several steps along the endocytic pathway. However, the precise molecular mechanism of Notch activation and the role played by endosomal sorting and trafficking remain elusive. We developed an antibody uptake assay to enable live imaging of endogenous internalized Notch and Delta in Drosophila tissues. In this chapter, we describe how to perform live antibody uptake assays in the Drosophila notum. In this tissue, Notch signaling plays a crucial role in the regulation of cell fate decisions in the lineage of sensory organ precursor (SOP) cells. We describe here how to do a correlative analysis of Notch/Delta live imaging in dividing SOPs and of the lineage of these particular SOPs. Combined with the wide range of genetic and chemical tools available in Drosophila research, these two methods will provide a better understanding of the role played by endocytic proteins and endosomal trafficking in Notch regulation, in terms of botch Notch trafficking and Notch signaling output.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Pupa/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Anticorpos/química , Anticorpos/metabolismo , Divisão Celular , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Endocitose , Corantes Fluorescentes , Expressão Gênica , Imunoensaio , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Imagem Molecular , Transporte Proteico , Pupa/citologia , Pupa/genética , Receptores Notch/genética , Imagem com Lapso de Tempo
20.
Traffic ; 13(5): 665-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22321127

RESUMO

Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.


Assuntos
Actinas/metabolismo , Melanossomas/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Actinas/química , Animais , Membrana Celular/metabolismo , Corioide/citologia , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica/métodos , Microscopia de Vídeo/métodos , Microtúbulos/metabolismo , Modelos Biológicos , Cadeias Pesadas de Miosina/química , Miosinas/metabolismo , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...