Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Horm Cancer ; 7(4): 260-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307252

RESUMO

Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD(+)-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen-dependent versus castration-resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration-resistant tumor cells expressed higher levels of UGDH, UGT2B15, and UGT2B17. However, the magnitude of androgen-activated UGDH and prostate-specific antigen (PSA) expression, as well as the androgen receptor (AR)-dependent repression of UGT2B15 and UGT2B17, was blunted several-fold in these cells. Consistent with these results, the ligand-activated binding of AR to the PSA promoter and subsequent transcriptional activation were also significantly reduced in castration-resistant cells. Analysis of the UDP-sugar pools and flux through pathways downstream of UDP-glucuronate production revealed that these glucuronidation precursor metabolites were channeled through proteoglycan and glycosaminoglycan biosynthetic pathways, leading to increased surface expression of Notch1. Knockdown of UGDH diminished Notch1 and increased glucuronide output. Overall, these results support a model in which the aberrant partitioning of UDP-glucuronate and other UDP-sugars into alternative pathways during androgen deprivation contributes to the loss of prostate tumor cell androgen sensitivity by promoting altered cell surface proteoglycan expression.


Assuntos
Androgênios/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias da Próstata/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Modelos Biológicos , Regiões Promotoras Genéticas , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo
2.
Am J Pathol ; 174(3): 1027-36, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19218337

RESUMO

Accumulation of extracellular hyaluronan (HA) and its processing enzyme, the hyaluronidase Hyal1, predicts invasive, metastatic progression of human prostate cancer. To dissect the roles of hyaluronan synthases (HAS) and Hyal1 in tumorigenesis and metastasis, we selected nonmetastatic 22Rv1 prostate tumor cells that overexpress HAS2, HAS3, or Hyal1 individually, and compared these cells with co-transfectants expressing Hyal1 + HAS2 or Hyal1 + HAS3. Cells expressing only HAS were less tumorigenic than vector control transfectants on orthotopic injection into mice. In contrast, cells co-expressing Hyal1 + HAS2 or Hyal1 + HAS3 showed greater than sixfold and twofold increases in tumorigenesis, respectively. Fluorescence and histological quantification revealed spontaneous lymph node metastasis in all Hyal1 transfectant-implanted mice, and node burden increased an additional twofold when Hyal1 and HAS were co-expressed. Cells only expressing HAS were not metastatic. Thus, excess HA synthesis and processing in concert accelerate the acquisition of a metastatic phenotype by prostate tumor cells. Intratumoral vascularity did not correlate with either tumor size or metastatic potential. Analysis of cell cycle progression revealed shortened doubling times of Hyal1-expressing cells. Both adhesion and motility on extracellular matrix were diminished in HA-overproducing cells; however, motility was increased twofold by Hyal1 expression and fourfold to sixfold by Hyal1/HAS co-expression, in close agreement with observed metastatic potential. This is the first comprehensive examination of these enzymes in a relevant prostate cancer microenvironment.


Assuntos
Adenocarcinoma/patologia , Ácido Hialurônico/metabolismo , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia , Adenocarcinoma/metabolismo , Animais , Ciclo Celular , Movimento Celular , Matriz Extracelular/patologia , Humanos , Ácido Hialurônico/biossíntese , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Neoplasias da Próstata/metabolismo , Transplante Heterólogo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...