Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 29(17): 1160-1177, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31941419

RESUMO

Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.


Assuntos
Movimento Celular , Endotelinas/farmacologia , Neocórtex/citologia , Neurregulinas/metabolismo , Neuroglia/metabolismo , Neurotransmissores/farmacologia , Proteólise , Receptor ErbB-4/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteólise/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/metabolismo
2.
Neuroscience ; 375: 135-148, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438802

RESUMO

Cell-cell communication plays a central role in the guidance of migrating neuronal precursor cells during the development of the cerebral cortex. Endocannabinoids (eCBs) have previously been shown to be one of the central factors regulating neuronal migration. In this study the effects of eCBs on different parameters, expected to affect embryonic cortical neuronal motility have been analyzed in neurosphere-derived neuroblasts using time-lapse microscopy. Increased endogenous production of the endocannabinoid 2-arachidonyl glycerol (2-AG) causes bursts of neuroblast motility. The neuroblasts move longer distances and show a low frequency of turning, and the number of neuron-neuron contacts are reduced. Similar changes occur interfering with the function of the metabotropic glutamate receptor 5 (mGluR5) or its transducer canonical transient receptor potential channel 3 (TRPC3) or the neuregulin receptor ErbB4. Blocking of 2-AG production reverses these effects. The data suggest that eCB-regulated neuronal motility is controlled by mGluR5/TRPC3 activity possibly via NRG/ErbB4 signaling.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Endocanabinoides/metabolismo , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Endocanabinoides/antagonistas & inibidores , Receptores ErbB/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuregulina-1/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor ErbB-4/metabolismo
3.
Glia ; 66(1): 94-107, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887860

RESUMO

Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Neurregulinas/metabolismo , Receptor ErbB-4/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Embrião de Mamíferos , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurregulinas/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4/genética , Receptor de Glutamato Metabotrópico 5/genética , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/genética
4.
Stem Cells Dev ; 24(6): 701-13, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25347706

RESUMO

The guidance of developing neurons to the right position in the central nervous system is of central importance in brain development. Canonical transient receptor potential (TRPC) channels are thought to mediate turning responses of growth cones to guidance cues through fine control of calcium transients. Proliferating and 1- to 5-day-differentiated neural progenitor cells (NPCs) showed expression of Trpc1 and Trpc3 mRNA, while Trpc4-7 was not clearly detected. Time-lapse imaging showed that the motility pattern of neuronal cells was phasic with bursts of rapid movement (>60 µm/h), changes in direction, and intermittent slow phases or stallings (<40 µm/h), which frequently occurred in close contact with radial glial processes. Genetic interference with the TRPC3 and TRPC1 channel enhanced the motility of NPCs (burst frequency/stalling frequency). TRPC3-deficient cells or cells treated with the TRPC3 blocker pyr3 infrequently changed direction and seldom contacted radial glial processes. TRPC channels are also activated by group I metabotropic glutamate receptors (mGluR1 and mGluR5). As shown here, pyr3 blocked the calcium response mediated through mGluR5 in radial glial processes. Furthermore, 2-methyl-6-(phenylethynyl)pyridine, a blocker of mGluR5, affected the motility pattern in a similar way as TRPC3/6 double knockout or pyr3. The results suggest that radial glial cells exert attractant signals to migrating neuronal cells, which alter their motility pattern. Our results suggest that mGluR5 acting through TRPC3 is of central importance in radial glial-mediated neuronal guidance.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/genética , Canais de Cátion TRPC/genética
5.
Stem Cells Dev ; 22(8): 1206-19, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23234460

RESUMO

The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Movimento Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Neurais/fisiologia , Neuritos/fisiologia , Animais , Bário/metabolismo , Bário/fisiologia , Benzimidazóis/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ciclopropanos/farmacologia , Células-Tronco Embrionárias/metabolismo , Fura-2/química , Potenciais da Membrana/efeitos dos fármacos , Mibefradil/farmacologia , Camundongos , Microscopia Confocal , Naftalenos/farmacologia , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Imagem com Lapso de Tempo
6.
Brain Res ; 1461: 10-23, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22608071

RESUMO

The response of differentiating mouse neural progenitor cells, migrating out from neurospheres, to conditions simulating ischemia (hypoxia and extracellular or intracellular acidosis) was studied. We show here, by using BCECF and single cell imaging to monitor intracellular pH (pH(i)), that two main populations can be distinguished by exposing migrating neural progenitor cells to low extracellular pH or by performing an acidifying ammonium prepulse. The cells dominating at the periphery of the neurosphere culture, which were positive for neuron specific markers MAP-2, calbindin and NeuN had lower initial resting pH(i) and could also easily be further acidified by lowering the extracellular pH. Moreover, in this population, a more profound acidification was seen when the cells were acidified using the ammonium prepulse technique. However, when the cell population was exposed to depolarizing potassium concentrations no alterations in pH(i) took place in this population. In contrast, depolarization caused an increase in pH(i) (by 0.5 pH units) in the cell population closer to the neurosphere body, which region was positive for the radial cell marker (GLAST). This cell population, having higher resting pH(i) (pH 6.9-7.1) also responded to acute hypoxia. During hypoxic treatment the resting pH(i) decreased by 0.1 pH units and recovered rapidly after reoxygenation. Our results show that migrating neural progenitor cells are highly sensitive to extracellular acidosis and that irreversible damage becomes evident at pH 6.2. Moreover, our results show that a response to acidosis clearly distinguishes two individual cell populations probably representing neuronal and radial cells.


Assuntos
Diferenciação Celular/fisiologia , Líquido Intracelular/fisiologia , Células-Tronco Neurais/fisiologia , Acidose/induzido quimicamente , Acidose/patologia , Animais , Ácido Butírico/toxicidade , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Concentração de Íons de Hidrogênio , Ventrículos Laterais/citologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Células-Tronco Neurais/patologia , Fatores de Tempo
7.
Biochem Biophys Res Commun ; 417(1): 93-7, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22138651

RESUMO

Muscarinic toxins (MTs) are snake venom peptides found to selectively target specific subtypes of G-protein-coupled receptors. In here, we have attached a glycosylphosphatidylinositol (GPI) tail to three different toxin molecules and evaluated their receptor-blocking effects in a heterologous expression system. MT7-GPI remained anchored to the cell surface and selectively inhibited M(1) muscarinic receptor signaling expressed in the same cell. To further demonstrate the utility of the GPI tail, we generated MT3- and MTα-like gene sequences and fused these to the signal sequence for GPI attachment. Functional assessment of these membrane-anchored toxins on coexpressed target receptors indicated a prominent antagonistic effect. In ligand binding experiments the GPI-anchored toxins were found to exhibit similar selection profiles among receptor subtypes as the soluble toxins. The results indicate that GPI attachment of MTs and related receptor toxins could be used to assess the role of receptor subtypes in specific organs or even cells in vivo by transgenic approaches.


Assuntos
Venenos Elapídicos/química , Glicosilfosfatidilinositóis/química , Antagonistas Muscarínicos/química , Neurotoxinas/química , Peptídeos/química , Receptor Muscarínico M1/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular , Venenos Elapídicos/genética , Venenos Elapídicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Antagonistas Muscarínicos/farmacologia , Neurotoxinas/genética , Neurotoxinas/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Ensaio Radioligante
8.
Neurobiol Dis ; 41(2): 469-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21047554

RESUMO

Fragile X syndrome (FXS) is a common cause of inherited mental retardation and the best characterized form of autistic spectrum disorders. FXS is caused by the loss of functional fragile X mental retardation protein (FMRP), which leads to abnormalities in the differentiation of neural progenitor cells (NPCs) and in the development of dendritic spines and neuronal circuits. Brain-derived neurotrophic factor (BDNF) and its TrkB receptors play a central role in neuronal maturation and plasticity. We studied BDNF/TrkB actions in the absence of FMRP and show that an increase in catalytic TrkB expression in undifferentiated NPCs of Fmr1-knockout (KO) mice, a mouse model for FXS, is associated with changes in the differentiation and migration of neurons expressing TrkB in neurosphere cultures and in the developing cortex. Aberrant intracellular calcium responses to BDNF and ATP in subpopulations of differentiating NPCs combined with changes in the expression of BDNF and TrkB suggest cell subtype-specific alterations during early neuronal maturation in the absence of FMRP. Furthermore, we show that dendritic targeting of Bdnf mRNA was increased under basal conditions and further enhanced in cortical layer V and hippocampal CA1 neurons of Fmr1-KO mice by pilocarpine-induced neuronal activity represented by convulsive seizures, suggesting that BDNF/TrkB-mediated feedback mechanisms for strengthening the synapses were compromised in the absence of FMRP. Pilocarpine-induced seizures caused an accumulation of Bdnf mRNA transcripts in the most proximal segments of dendrites in cortical but not in hippocampal neurons of Fmr1-KO mice. In addition, BDNF protein levels were increased in the hippocampus but reduced in the cortex of Fmr1-KO mice in line with regional differences of synaptic plasticity in the brain of Fmr1-KO mice. Altogether, the present data suggest that alterations in the BDNF/TrkB signaling modulate brain development and impair synaptic plasticity in FXS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Malformações do Sistema Nervoso/metabolismo , Receptor trkB/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/genética , Plasticidade Neuronal/genética , Receptor trkB/genética , Transmissão Sináptica/genética
9.
Cell Calcium ; 48(2-3): 114-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20728215

RESUMO

TRPC channels play significant roles in the regulation of neuronal plasticity and development. The mechanism by which these nonselective cation channels exert their trophic actions appears to involve entry of Ca(2+) into the cells. Using a neuronal cell model (differentiated human IMR32 neuroblastoma cells), we demonstrate a central role for sodium entry via TRPC3/6 channels in receptor-mediated increases in intracellular calcium. These Na(+)-dependent Ca(2+) influxes, which were observed in a subpopulation of cells, were efficiently blocked by protein kinase C activation, by the Na(+)/Ca(2+) exchanger inhibitors, and by molecular disruption of TRPC3/6 channel function. On the other hand, another subpopulation of cells showed a Na(+)-independent Ca(2+) entry upon stimulation of the same receptors, orexin/hypocretin and bradykinin receptors. This second type of response was not affected by the above mentioned treatments, but it was sensitive to polyvalent cations, such as ruthenium red, spermine and Gd(3+). The data suggest that a NCX-TRPC channel interaction constitutes an important functional unit in receptor-mediated Ca(2+) influx in neuronal cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Canais de Cátion TRPC/fisiologia , Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Orexina , Proteína Quinase C/fisiologia , Receptores da Bradicinina/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Rutênio Vermelho/farmacologia , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/fisiologia , Espermina/fisiologia , Canais de Cátion TRPC/antagonistas & inibidores , Canal de Cátion TRPC6
10.
J Cell Physiol ; 221(1): 67-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19507192

RESUMO

TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non-selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR-32 undergoes a remarkable differentiation in response to treatment with 5-bromo-2-deoxyuridine. The cells acquire a neuronal morphology with increased expression of N-type voltage gated calcium channels and neurotransmitters. Here we show using RT-PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR-32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl-isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC-030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR-32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR-32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression.


Assuntos
Canais de Cálcio/metabolismo , Diferenciação Celular , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Isotiocianatos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Técnicas de Patch-Clamp , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPM/genética , Canais de Potencial de Receptor Transitório/genética
11.
J Biol Chem ; 280(3): 1771-81, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15537648

RESUMO

The orexins are peptide transmitters/hormones, which exert stimulatory actions in many types of cells via the G-protein-coupled OX(1) and OX(2) receptors. Our previous results have suggested that low (subnanomolar) concentrations of orexin-A activate Ca(2+) entry, whereas higher concentrations activate phospholipase C, Ca(2+) release, and capacitative Ca(2+) entry. As shown here, the Ca(2+) response to subnanomolar orexin-A concentrations was blocked by activation of protein kinase C by using different approaches (12-O-tetradecanoylphorbol acetate, dioctanoylglycerol, and diacylglycerol kinase inhibition) and protein phosphatase inhibition by calyculin A. The Ca(2+) response to subnanomolar orexin-A concentrations was also blocked by Mg(2+), dextromethorphan, and tetraethylammonium. These treatments neither affected the response to high concentrations of orexin-A nor the thapsigargin-stimulated capacitative entry. The capacitative entry was instead strongly suppressed by SKF96365. An inward membrane current activated by subnanomolar concentrations of orexin-A and the currents activated upon transient expression of trpc3 channels were also sensitive to Mg(2+), dextromethorphan, and tetraethylammonium. Responses to subnanomolar concentrations of orexin-A (Ca(2+) elevation, inward current, and membrane depolarization) were voltage-dependent with a loss of the response around -15 mV. By using reverse transcription-PCR, mRNA for the trpc1-4 channel isoforms were detected in the CHO-hOX1-C1 cells. The expression of truncated TRPC channel isoforms, in particular trpc1 and trpc3, reduced the response to subnanomolar concentrations of orexin-A but did not affect the response to higher concentrations of orexin-A. The results suggest that activation of the OX(1) receptor leads to opening of a Ca(2+)-permeable channel, involving trpc1 and -3, which is controlled by protein kinase C.


Assuntos
Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Canais Iônicos/fisiologia , Neuropeptídeos/farmacologia , Proteína Quinase C/metabolismo , Animais , Sequência de Bases , Células CHO , Cricetinae , Primers do DNA , Imunoprecipitação , Transporte de Íons , Magnésio/metabolismo , Dados de Sequência Molecular , Orexinas , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...