Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255949

RESUMO

BackgroundEven with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, could be optimised to maximise economic benefits while achieving substantial reductions in disease. MethodsHere we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay for health improvement. ResultsWe find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the willingness to pay (WTP) per QALY loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value. ConclusionsIt is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248896

RESUMO

BackgroundThe announcement of efficacious vaccine candidates against SARS-CoV-2 has been met with worldwide acclaim and relief. Many countries already have detailed plans for vaccine targeting based on minimising severe illness, death and healthcare burdens. Normally, relatively simple relationships between epidemiological parameters, vaccine efficacy and vaccine uptake predict the success of any immunisation programme. However, the dynamics of vaccination against SARS-CoV-2 is made more complex by age-dependent factors, changing levels of infection and the potential relaxation of non-pharmaceutical interventions (NPIs) as the perceived risk declines. MethodsIn this study we use an age-structured mathematical model, matched to a range of epidemiological data in the UK, that also captures the roll-out of a two-dose vaccination programme targeted at specific age groups. FindingsWe consider the interaction between the UK vaccination programme and future relaxation (or removal) of NPIs. Our predictions highlight the population-level risks of early relaxation leading to a pronounced wave of infection, hospital admissions and deaths. Only vaccines that offer high infection-blocking efficacy with high uptake in the general population allow relaxation of NPIs without a huge surge in deaths. InterpretationWhile the novel vaccines against SARS-CoV-2 offer a potential exit strategy for this outbreak, this is highly contingent on the infection-blocking (or transmission-blocking) action of the vaccine and the population uptake, both of which need to be carefully monitored as vaccine programmes are rolled out in the UK and other countries. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSVaccination has been seen as a key tool in the fight against SARS-CoV-2. The vaccines already developed represent a major technological achievement and have been shown to generate significant immune responses, as well as offering considerable protection against disease. However, to date there is limited information on the degree of infection-blocking these vaccines are likely to induce. Mathematical models have already successfully been used to consider age- and risk-structured targeting of vaccination, highlighting the importance of prioritising older and high-risk individuals. Added value of this studyTranslating current knowledge and uncertainty of vaccine behaviour into meaningful public health messages requires models that fully capture the within-country epidemiology as well as the complex roll-out of a two-dose vaccination programme. We show that under reasonable assumptions for vaccine efficacy and uptake the UK is unlikely to reach herd immunity, which means that non-pharmaceutical interventions cannot be released without generating substantial waves of infection. Implications of all the available evidenceVaccination is likely to provide substantial individual protection to those receiving two doses, but the degree of protection to the wider population is still uncertain. While substantial immunisation of the most vulnerable groups will allow for some relaxation of controls, this must be done gradually to prevent large scale public health consequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA