Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(12): 125504, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005959

RESUMO

Noble-transition metal (noble=Pt,Au; transition=Co,Ni,Cu) alloy particles with sizes of about 5 nm have been studied by in situ high-energy x-ray diffraction while subjected to oxidizing (O(2)) and reducing (H(2)) gas atmospheres at elevated temperatures. The different gas atmospheres do not affect substantially the random alloy, face-centered-cubic structure type of the particles but do affect the way the metal atoms pack together. In an O(2) atmosphere, atoms get extra separated from each other, whereas, in an H(2) atmosphere, they come closer together. The effect is substantial, amounting to 0.1 Å difference in the first neighbor atomic distances, and concurs with a dramatic change of the particle catalytic properties. It is argued that such reactive gas induced "expansion shrinking" is a common phenomenon that may be employed for the engineering of "smart" nanoparticles responding advantageously to envisaged gas environments.

2.
Nanotechnology ; 23(33): 335705, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22863867

RESUMO

High-temperature sintering of ternary Pt(x)Ni(100-x-y)Co(y) (x = 28-44%, y = 40-54%) nanoparticles of interest in catalysis was studied in situ and in real-time with synchrotron-based x-ray diffraction. For the first time we were able to experimentally capture the early stage of the thermal treatment, and found the nanoparticles to undergo an unusual two-step coalescence process that involves transient growth and restructuring of the nanoparticles. The coalescence process is accompanied by lattice contraction, likely due to composition evolution towards a random alloy. In the late stage of sintering, evidence was found for self-limited grain growth and L1(0) chemical ordering. The order-disorder transition temperature was found to be around 800 °C in all four ternary alloy compositions studied. Fitting of the experimental data with the model for grain growth with size-dependent impediment leads to an activation energy for mass transport of about 100 kJ mol(-1), and may be used as a predictive tool to estimate particle size as a function of heat treatment temperature and duration.

3.
Nanotechnology ; 22(2): 025701, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21135475

RESUMO

In situ real-time x-ray diffraction was used to study temperature-induced structural changes of 1-5 nm Au, Pt, and AuPt nanocatalysts supported on silicon substrates. Synchrotron-based x-ray diffraction indicates that the as-synthesized Au and Au(64)Pt(36) nanoparticles have a non-crystalline structure, while the Pt nanoparticles have the expected cubic structure. The nanoparticles undergo dramatic structural changes at temperatures as low as 120 °C. During low-temperature annealing, the Au and AuPt nanoparticles first melt and then immediately coalesce to form 4-5 nm crystalline structures. The Pt nanoparticles also aggregate but with limited intermediate melting. The detailed mechanisms of nucleation and growth, though, are quite different for the three types of nanoparticles. Most interestingly, solidification of high-density AuPt nanoparticles involves an unusual transient morphological transformation that affects only the surface of the particles. AuPt nanoparticles on silicon undergo partial phase segregation only upon annealing at extremely high temperatures (800 °C).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...