Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(20): 16731-8, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11278346

RESUMO

Expression of a maize cDNA encoding a high mobility group (HMG) I/Y protein enables growth of transformed yeast on a medium containing toxic nickel concentrations. No difference in the nickel content was measured between yeast cells expressing either the empty vector or the ZmHMG I/Y2 cDNA. The ZmHMG I/Y2 protein contains four AT hook motifs known to be involved in binding to the minor groove of AT-rich DNA regions. HMG I/Y proteins may act as architectural elements modifying chromatin structure. Indeed, a ZmHMG I/Y2-green fluorescent protein fusion protein was observed in yeast nuclei. Nickel toxicity has been suggested to occur through an epigenetic mechanism related to chromatin condensation and DNA methylation, leading to the silencing of neighboring genes. Therefore, the ZmHMG I/Y2 protein could prevent nickel toxicity by interfering with chromatin structure. Yeast cell growth in the presence of nickel and yeast cells expressing the ZmHMG I/Y2 cDNA increased telomeric URA3 gene silencing. Furthermore, ZmHMG I/Y2 restored a wild-type level of nickel sensitivity to the yeast (Delta)rpd3 mutant. Therefore, nickel resistance of yeast cells expressing the ZmHMG I/Y2 cDNA is likely achieved by chromatin structure modification, restricting nickel accessibility to DNA.


Assuntos
Cromatina/fisiologia , Proteína HMGA1a , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Níquel/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/fisiologia , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Resistência a Medicamentos , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas de Grupo de Alta Mobilidade/química , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Zea mays/fisiologia
2.
Nature ; 409(6818): 346-9, 2001 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11201743

RESUMO

Frequently, crop plants do not take up adequate amounts of iron from the soil, leading to chlorosis, poor yield and decreased nutritional quality. Extremely limited soil bioavailability of iron has led plants to evolve two distinct uptake strategies: chelation, which is used by the world's principal grain crops; and reduction, which is used by other plant groups. The chelation strategy involves extrusion of low-molecular-mass secondary amino acids (mugineic acids) known as 'phytosiderophores' which chelate sparingly soluble iron. The Fe(III)-phytosiderophore complex is then taken up by an unknown transporter at the root surface. The maize yellow stripe1 (ys1) mutant is deficient in Fe(III)-phytosiderophore uptake, therefore YS1 has been suggested to be the Fe(III)-phytosiderophore transporter. Here we show that ys1 is a membrane protein that mediates iron uptake. Expression of YS1 in a yeast iron uptake mutant restores growth specifically on Fe(III)-phytosiderophore media. Under iron-deficient conditions, ys1 messenger RNA levels increase in both roots and shoots. Cloning of ys1 is an important step in understanding iron uptake in grasses, and has implications for mechanisms controlling iron homeostasis in all plants.


Assuntos
Proteínas de Transporte/genética , Compostos Férricos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Biblioteca Genômica , Quelantes de Ferro/metabolismo , Dados de Sequência Molecular , Mutagênese , Saccharomyces cerevisiae , Zea mays/metabolismo
3.
Gene ; 225(1-2): 47-57, 1998 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-9931428

RESUMO

A complementation approach of the yeast fet3fet4 mutant strain, defective in both low- and high-affinity iron transport, was initiated as an attempt to characterize the Fe(III)-mugineic acid (MA) transporter from grasses. A maize cDNA encoding a novel MYC transcription factor, named 7E, was cloned by screening an iron-deficient maize root cDNA expression library on a minimum media containing Fe(III)-deoxyMA as a unique iron source. 7E expression restored growth specifically to the fet3 fet4 mutant strain. It did not affect growth rate of a trk1trk2 potassium transport defective yeast strain or parental W303 strain growth rate. No 55Fe uptake increase was observed in 7E transformed fet3 fet4 yeast during short-term kinetics. However, the iron accumulation in these cells was 1.3-fold higher than in untransformed cells after a 24-h period. The 7E protein contained 694 amino acids and had a predicted molecular mass of 74.2kDa. It had 44% identity with the RAP-1 protein, a 67.9-kDa MYC-like protein from Arabidopsis thaliana which binds the G-box sequence via a basic region helix-loop-helix (bHLH), without requiring heterodimerization with MYB proteins. Phylogenic comparisons revealed that the maize 7E protein was related to the Arabidopsis thaliana RAP-1 protein and to the Phaseolus vulgaris PG1. This similarity was particularly evident for the bHLH domain, which was 95% identical between maize 7E and Arabidopsis thaliana RAP-1. 7E, RAP-1 and PG-1 proteins revealed a plant MYC-like sub-family that was more related to the maize repressor-like IN1 than to maize R proteins. 7E mRNA was detected in both roots and leaves by the Northern analysis. The amount of 7E mRNA increased, in response to iron starvation, by 20 and 40% in roots and leaves, respectively. The relationship between iron metabolism and myc expression in animal cells is discussed.


Assuntos
DNA Complementar/genética , Proteínas Proto-Oncogênicas c-myc/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , DNA Complementar/química , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Ferro/metabolismo , Ferro/farmacologia , Dados de Sequência Molecular , Mutação , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...