Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(36): 42557-42567, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656014

RESUMO

The versatility of membranes is limited by the narrow range of material chemistries on the market, which cannot address many relevant separations. Expanding their use requires new membrane materials that can be tuned to address separations by providing the desired selectivity and robustness. Self-assembly is a versatile and scalable approach to create tunable membranes with a narrow pore size distribution. This study reports the first examples of a new class of membrane materials that derives state-of-the-art permeability, selectivity, and fouling resistance from the self-assembly of random polyampholyte amphiphilic copolymers. These membranes feature a network of ionic nanodomains that serve as nanochannels for water permeation, framed by hydrophobic nanodomains that preserve their structural integrity. This copolymer design approach enables precise selectivity control. For example, sodium sulfate rejections can be tuned from 5% to 93% with no significant change in the pore size or fouling resistance. Membranes developed here have potential applications in wastewater treatment and chemical separations.

2.
Environ Sci Technol ; 56(12): 8176-8186, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35576931

RESUMO

Long-term continuous monitoring (LTCM) of water quality can provide high-fidelity datasets essential for executing swift control and enhancing system efficiency. One roadblock for LTCM using solid-state ion-selective electrode (S-ISE) sensors is biofouling on the sensor surface, which perturbs analyte mass transfer and deteriorates the sensor reading accuracy. This study advanced the anti-biofouling property of S-ISE sensors through precisely coating a self-assembled channel-type zwitterionic copolymer poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA) on the sensor surface using electrospray. The PTFEMA-r-SBMA membrane exhibits exceptional permeability and selectivity to primary ions in water solutions. NH4+ S-ISE sensors with this anti-fouling zwitterionic layer were examined in real wastewater for 55 days consecutively, exhibiting sensitivity close to the theoretical value (59.18 mV/dec) and long-term stability (error <4 mg/L). Furthermore, a denoising data processing algorithm (DDPA) was developed to further improve the sensor accuracy, reducing the S-ISE sensor error to only 1.2 mg/L after 50 days of real wastewater analysis. Based on the dynamic energy cost function and carbon footprint models, LTCM is expected to save 44.9% NH4+ discharge, 12.8% energy consumption, and 26.7% greenhouse emission under normal operational conditions. This study unveils an innovative LTCM methodology by integrating advanced materials (anti-fouling layer coating) with sensor data processing (DDPA).


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Íons , Metacrilatos , Polímeros , Águas Residuárias
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493652

RESUMO

Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion-anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO4, NaI, NaBr, NaCl, NaF, and Na2SO4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell-Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion-Cl- and zwitterion-F- interactions granted these membranes with the ultrahigh Cl-/F- permselectivity (PCl-/PF- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...