Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 14(1): 68, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606887

RESUMO

The epigenetic changes associated with melanoma progression to advanced and metastatic stages are still poorly understood. To shed light on the CpG methylation dynamics during melanoma development, we analyzed the methylome profiles of a four-stage cell line model of melanoma progression: non-tumorigenic melanocytes (melan-a), premalignant melanocytes (4C), non-metastatic melanoma cells (4C11-), and metastatic melanoma cells (4C11+). We identified 540 hypo- and 37 hypermethylated gene promoters that together characterized a malignancy signature, and 646 hypo- and 520 hypermethylated promoters that distinguished a metastasis signature. Differentially methylated genes from these signatures were correlated with overall survival using TCGA-SKCM methylation data. Moreover, multivariate Cox analyses with LASSO regularization identified panels of 33 and 31 CpGs, respectively, from the malignancy and metastasis signatures that predicted poor survival. We found a concordant relationship between DNA methylation and transcriptional levels for genes from the malignancy (Pyroxd2 and Ptgfrn) and metastasis (Arnt2, Igfbp4 and Ptprf) signatures, which were both also correlated with melanoma prognosis. Altogether, this study reveals novel CpGs methylation markers associated with malignancy and metastasis that collectively could improve the survival prediction of melanoma patients.


Assuntos
Metilação de DNA , Melanoma , Ilhas de CpG , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Prognóstico , Regiões Promotoras Genéticas
2.
J Am Chem Soc ; 133(24): 9140-3, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21604744

RESUMO

Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2'-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2'-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 µM), increased levels of both 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdGuo), which is produced from α,ß-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.


Assuntos
Acetaldeído/farmacologia , Adutos de DNA/metabolismo , Desoxiguanosina/análogos & derivados , Linhagem Celular , Desoxiguanosina/metabolismo , Humanos , Fenil-Hidrazinas/química , Volatilização
3.
Chem Res Toxicol ; 22(10): 1728-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19761253

RESUMO

The well established rat hepatocarcinogen N-nitrosopyrrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 micromol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 micromol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 micromol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.


Assuntos
Adutos de DNA/análise , DNA/química , Guanina/análogos & derivados , Fígado/química , N-Nitrosopirrolidina/toxicidade , Espectrometria de Massas por Ionização por Electrospray , Animais , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Guanina/análise , Guanina/química , Fígado/metabolismo , N-Nitrosopirrolidina/química , Ratos , Estereoisomerismo
4.
Chem Res Toxicol ; 19(7): 927-36, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16841961

RESUMO

A recent study showed that tetrahydrofuran (THF), a widely used solvent, is carcinogenic in experimental animals. Despite its carcinogenic activity, there is a paucity of information regarding cellular toxicity, biomolecular damage, and genotoxicity induced by THF. We describe here the structural characterization of adducts produced by the reaction of oxidized THF with 2'-deoxyguanosine (dGuo-THF 1 and dGuo-THF 2), 2'-deoxyadenosine (dAdo-THF), and 2'-deoxycytidine (dCyd-THF). Adducts were isolated from in vitro reactions by reverse-phase HPLC and fully characterized on the basis of spectroscopic measurements. The stable derivatives obtained by the reduction of adducts with NaBH(4) (the case of dGuo-THF 1, dCyd-THF, and dAdo-THF) and the stable adduct dGuo-THF 2 were used as standards for optimization of chromatographic separations for adduct detection in DNA through HPLC/ESI/MS-MS. Using this methodology, we successfully detected the four adducts in calf thymus DNA reacted with oxidized THF. The present study also provides evidence that rat liver microsomal monooxigenases oxidize THF to the reactive electrophilic compounds that are able to damage the DNA molecule, as indicated by a significant increase in adduct dGuo-THF 1 level when NADPH was added to the THF/microsomes/dGuo incubation mixtures. Our data point to DNA-THF adducts as possible contributing factors to the toxicological effects of THF exposure.


Assuntos
Adutos de DNA/química , Desoxiadenosinas/química , Desoxicitidina/química , Desoxiguanosina/química , Furanos/química , Animais , Carcinógenos/química , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxiguanosina/análogos & derivados , Furanos/farmacologia , Furanos/toxicidade , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Oxirredução , Ratos , Espectrometria de Massas por Ionização por Electrospray
5.
Chem Res Toxicol ; 18(2): 290-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15720135

RESUMO

The reaction of 2'-deoxyguanosine with the alpha,beta-unsaturated aldehydes trans-2-octenal, trans-2-nonenal, trans-2-decenal, trans,trans-2,4-nonadienal, and trans,trans-2,4-decadienal in THF gives rise to three novel adducts: 3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-[3-hydroxy-1-(3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-3,5-dihydro-imidazo[1,2-a]purin-9-one-7-yl)-propyl]-3,5-dihydro-imidazo[1,2-a]purin-9-one (A7) and 3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-(tetrahydrofuran-2-yl)-3,5-dihydro-imidazo[1,2-a]purin-9-one (A8 and A9), which are not observed in the absence of THF. These adducts were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adduct A7 consists of two 1,N2-etheno-2'-deoxyguanosine (1,N2-epsilon dGuo) residues linked to a hydroxy-carbon side chain; adducts A8 and A9 are interconvertible 1,N2-epsilon dGuo derivatives bearing a THF moiety. The proposed reaction mechanism involves the electrophilic attack on 1,N2-epsilon dGuo by the carbonyl of 4-hydroxy-butanal, generated via ring opening of alpha-hydroxy-THF (THF-OH), yielding adducts A8 and A9. A further combination of these adducts with another 1,N2-epsilon dGuo produces the double adduct A7. These findings demonstrate that reactions of unsaturated aldehydes in the presence of THF produce novel condensation 1,N2-epsilon dGuo-THF adducts. Further studies would indicate the relevance of these adducts in THF toxicity.


Assuntos
Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Furanos/química , Desoxiguanosina/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular
6.
Chem Res Toxicol ; 17(5): 641-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15144221

RESUMO

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N(2)-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N(2)-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy-3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo[1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H(2)O(2) or tert-butyl hydroperoxide. Neutral conditions, in the presence of H(2)O(2), have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.


Assuntos
Aldeídos/química , Adutos de DNA/química , Desoxiadenosinas/química , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclização , Dano ao DNA , Desoxiadenosinas/metabolismo , Compostos de Epóxi/química , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos/fisiologia , Espectroscopia de Ressonância Magnética , Oxirredução , Estereoisomerismo
7.
FEBS Lett ; 560(1-3): 125-30, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14988010

RESUMO

Epidemiological studies testing the effect of beta-carotene in humans have found a relative risk for lung cancer in smokers supplemented with beta-carotene. We investigated the reactions of retinal and beta-apo-8'-carotenal, two beta-carotene oxidation products, with 2'-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N(2)-etheno-2'-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with beta-carotene or beta-carotene oxidation products, significantly increased levels of 1,N(2)-etheno-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of beta-carotene oxidation products.


Assuntos
Antioxidantes/metabolismo , Adutos de DNA/análise , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , beta Caroteno/metabolismo , Animais , Carotenoides/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , DNA/análise , Desoxiguanosina/isolamento & purificação , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Retinaldeído/metabolismo , Espectrometria de Massas por Ionização por Electrospray
8.
Mutat Res ; 544(2-3): 115-27, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14644314

RESUMO

Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.


Assuntos
Alquilantes/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/genética , Neoplasias/genética , Espécies Reativas de Oxigênio/toxicidade , Adutos de DNA , Humanos , Peroxidação de Lipídeos , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Estresse Oxidativo , Oxigênio Singlete/toxicidade
9.
Chem Res Toxicol ; 15(10): 1302-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12387629

RESUMO

A method involving on-line reversed-phase high-performance liquid chromatography with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysate. Using the newly developed technique, basal levels of 1,N(2)-etheno-2'-deoxyguanosine were determined in commercial calf thymus DNA (1.70 +/- 0.09 adducts/10(7) dGuo), in cultured mammalian cells (CV1-P) DNA (4.5 +/- 0.4 adducts/10(7) dGuo), and in untreated female rat liver DNA (5.22 +/- 1.37 adduct/10(7) dGuo). The mutagenicity of 1,N(2)-etheno-2'-deoxyguanosine had already been demonstrated by in vitro and in vivo systems. The method described here provides the first evidence of the occurrence of 1,N(2)-etheno-2'-deoxyguanosine as a basal endogenous lesion and may be usefully employed to assess the biological consequences of etheno DNA damage under normal and pathological conditions.


Assuntos
Adutos de DNA/análise , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Animais , Cromatografia Líquida/métodos , Feminino , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...