Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0258061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587215

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disorder. The disease is characterized by degeneration of upper and lower motor neurons, leading to death usually within five years after the onset of symptoms. While most cases are sporadic, 5%-10% of cases can be associated with familial inheritance, including ALS type 6, which is associated with mutations in the Fused in Sarcoma (FUS) gene. This work aimed to evaluate how the most frequent ALS-related mutations in FUS, R521C, R521H, and P525L affect the protein structure and function. We used prediction algorithms to analyze the effects of the non-synonymous single nucleotide polymorphisms and performed evolutionary conservation analysis, protein frustration analysis, and molecular dynamics simulations. Most of the prediction algorithms classified the three mutations as deleterious. All three mutations were predicted to reduce protein stability, especially the mutation R521C, which was also predicted to increase chaperone binding tendency. The protein frustration analysis showed an increase in frustration in the interactions involving the mutated residue 521C. Evolutionary conservation analysis showed that residues 521 and 525 of human FUS are highly conserved sites. The molecular dynamics results indicate that protein stability could be compromised in all three mutations. They also affected the exposed surface area and protein compactness. The analyzed mutations also displayed high flexibility in most residues in all variants, most notably in the interaction site with the nuclear import protein of FUS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Simulação por Computador , Mutação , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/mortalidade , Análise Mutacional de DNA , Bases de Dados de Proteínas , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Proteína FUS de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...