Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2220927120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252951

RESUMO

We report analytical and numerical investigations of subion-scale turbulence in low-beta plasmas using a rigorous reduced kinetic model. We show that efficient electron heating occurs and is primarily due to Landau damping of kinetic Alfvén waves, as opposed to Ohmic dissipation. This collisionless damping is facilitated by the local weakening of advective nonlinearities and the ensuing unimpeded phase mixing near intermittent current sheets, where free energy concentrates. The linearly damped energy of electromagnetic fluctuations at each scale explains the steepening of their energy spectrum with respect to a fluid model where such damping is excluded (i.e., a model that imposes an isothermal electron closure). The use of a Hermite polynomial representation to express the velocity-space dependence of the electron distribution function enables us to obtain an analytical, lowest-order solution for the Hermite moments of the distribution, which is borne out by numerical simulations.

2.
Phys Rev E ; 106(3-2): 035208, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266832

RESUMO

Kinetic simulations of collisionless (or weakly collisional) plasmas using the Vlasov equation are often infeasible due to high-resolution requirements and the exponential scaling of computational cost with respect to dimension. Recently, it has been proposed that matrix product state (MPS) methods, a quantum-inspired but classical algorithm, can be used to solve partial differential equations with exponential speed-up, provided that the solution can be compressed and efficiently represented as a MPS within some tolerable error threshold. In this work, we explore the practicality of MPS methods for solving the Vlasov-Poisson equations for systems with one coordinate in space and one coordinate in velocity, and find that important features of linear and nonlinear dynamics, such as damping or growth rates and saturation amplitudes, can be captured while compressing the solution significantly. Furthermore, by comparing the performance of different mappings of the distribution functions onto the MPS, we develop an intuition of the MPS representation and its behavior in the context of solving the Vlasov-Poisson equations, which will be useful for extending these methods to higher-dimensional problems.

3.
Proc Natl Acad Sci U S A ; 119(19): e2119831119, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512093

RESUMO

SignificanceAstronomical observations indicate that dynamically important magnetic fields are ubiquitous in the Universe, while their origin remains a profound mystery. This work provides a paradigm for understanding the origin of cosmic magnetism by taking into account the effects of the microphysics of collisionless plasmas on macroscopic astrophysical processes. We demonstrate that the first magnetic fields can be spontaneously generated in the Universe by generic motions of astrophysical turbulence through kinetic plasma physics, and cosmic plasmas are thereby ubiquitously magnetized. Our theoretical and numerical results set the stage for determining how these "seed" magnetic fields are further amplified by the turbulent dynamo (another central and long-standing question) and thus advance a fully self-consistent explanation of cosmic magnetogenesis.

4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446548

RESUMO

Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming [Formula: see text], where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity [Formula: see text], where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for [Formula: see text] Finally, we discuss potential applications, showing that the [Formula: see text] condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R.

5.
Phys Rev Lett ; 127(27): 274501, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061423

RESUMO

In Navier-Stokes turbulence, energy and helicity injected at large scales are subject to a joint direct cascade, with both quantities exhibiting a spectral scaling ∝k^{-5/3}. We demonstrate via direct numerical simulations that the two cascades are compatible due to the existence of a strong scale-dependent phase alignment between velocity and vorticity fluctuations, with the phase alignment angle scaling as cosα_{k}∝k^{-1}.

6.
Phys Rev Lett ; 125(26): 265101, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449762

RESUMO

In weakly collisional plasma environments with sufficiently low electron beta, Alfvénic turbulence transforms into inertial Alfvénic turbulence at scales below the electron skin depth, k_{⊥}d_{e}≳1. We argue that, in inertial Alfvénic turbulence, both energy and generalized kinetic helicity exhibit direct cascades. We demonstrate that the two cascades are compatible due to the existence of a strong scale dependence of the phase alignment angle between velocity and magnetic field fluctuations, with the phase alignment angle scaling as cosα_{k}∝k_{⊥}^{-1}. The kinetic and magnetic energy spectra scale as ∝k_{⊥}^{-5/3} and ∝k_{⊥}^{-11/3}, respectively. As a result of the dual direct cascade, the generalized helicity spectrum scales as ∝k_{⊥}^{-5/3}, implying progressive balancing of the turbulence as the cascade proceeds to smaller scales in the k_{⊥}d_{e}≫1 range. Turbulent eddies exhibit a phase-space anisotropy k_{∥}∝k_{⊥}^{5/3}, consistent with critically balanced inertial Alfvén fluctuations. Our results may be applicable to a variety of geophysical, space, and astrophysical environments, including the Earth's magnetosheath and ionosphere, solar corona, and nonrelativistic pair plasmas, as well as to strongly rotating nonionized fluids.

7.
Phys Rev Lett ; 120(10): 105101, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570310

RESUMO

We present results from a three-dimensional particle-in-cell simulation of plasma turbulence, resembling the plasma conditions found at kinetic scales of the solar wind. The spectral properties of the turbulence in the subion range are consistent with theoretical expectations for kinetic Alfvén waves. Furthermore, we calculate the local anisotropy, defined by the relation k_{∥}(k_{⊥}), where k_{∥} is a characteristic wave number along the local mean magnetic field at perpendicular scale l_{⊥}∼1/k_{⊥}. The subion range anisotropy is scale dependent with k_{∥}

8.
Phys Rev Lett ; 118(24): 245101, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665671

RESUMO

The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheetlike structures at small scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale λ∼LS_{L}^{-4/7}, where S_{L} is the outer-scale (L) Lundquist number and λ is the smallest of the field-perpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of eddies, therefore implying a fundamentally different route to energy dissipation than that predicted by the Kolmogorov-like phenomenology. In particular, our analysis predicts the existence of the subinertial, reconnection interval of MHD turbulence, with the estimated scaling of the Fourier energy spectrum E(k_{⊥})∝k_{⊥}^{-5/2}, where k_{⊥} is the wave number perpendicular to the local mean magnetic field. The same calculation is also performed for high (perpendicular) magnetic Prandtl number plasmas (Pm), where the reconnection scale is found to be λ/L∼S_{L}^{-4/7}Pm^{-2/7}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...