Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(9): 6171-6182, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780318

RESUMO

PURPOSE: To provide ultrahigh dose rate (UHDR) pencil beam scanning (PBS) proton dosimetry comparison of clinically used plane-parallel ion chambers, PTW (Physikalisch-Technische Werkstaetten) Advanced Markus and IBA (Ion Beam Application) PPC05, with a proton graphite calorimeter in a support of first in-human proton FLASH clinical trial. METHODS: Absolute dose measurement intercomparison of the plane-parallel plate ion chambers and the proton graphite calorimeter was performed at 5-cm water-equivalent depth using rectangular 250-MeV single-layer treatment plans designed for the first in-human FLASH clinical trial. The dose rate for each field was designed to remain above 60 Gy/s. The ion recombination effects of the plane-parallel plate ion chambers at various bias voltages were also investigated in the range of dose rates between 5 and 60 Gy/s. Two independent model-based extrapolation methods were used to calculate the ion recombination correction factors ks to compare with the two-voltage technique from most widely used clinical protocols. RESULTS: The mean measured dose to water with the proton graphite calorimeter across all the predefined fields is 7.702 ± 0.037 Gy. The average ratio over the predefined fields of the PTW Advanced Markus chamber dose to the calorimeter reference dose is 1.002 ± 0.007, whereas the IBA PPC05 chamber shows ∼3% higher reading of 1.033 ± 0.007. The relative differences in the ks values determined from between the linear and quadratic extrapolation methods and the two-voltage technique for the PTW Advanced Markus chamber are not statistically significant, and the trends of dose rate dependence are similar. The IBA PPC05 shows a flat response in terms of ion recombination effects based on the ks values calculated using the two-voltage technique. Differences in ks values for the PPC05 between the two-voltage technique and other model-based extrapolation methods are not statistically significant at FLASH dose rates. Some of the ks values for the PPC05 that were extrapolated from the three-voltage linear method and the semiempirical model were reported less than unity possibly due to the charge multiplication effect, which was negligible compared to the volume recombination effect in FLASH dose rates. CONCLUSIONS: The absolute dose measurements of both PTW Advanced Markus and IBA PPC05 chambers are in a good agreement with the National Physical Laboratory graphite calorimeter reference dose considering overall uncertainties. Both ion chambers also demonstrate good reproducibility as well as stability as reference dosimeters in UHDR PBS proton radiotherapy. The dose rate dependency of the ion recombination effects of both ion chambers in cyclotron generated PBS proton beams is acceptable and therefore, both chambers are suitable to use in clinical practice for the range of dose rates between 5 and 60 Gy/s.


Assuntos
Grafite , Prótons , Protocolos Clínicos , Humanos , Radiometria/métodos , Reprodutibilidade dos Testes , Água
2.
Med Phys ; 42(2): 760-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652490

RESUMO

PURPOSE: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. METHODS: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for "dose of the day" calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. RESULTS: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD2%-pp). Larger DD2%-pp was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively. CONCLUSIONS: The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Radioterapia de Intensidade Modulada , Incerteza , Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...