Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21669, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066082

RESUMO

The 2020 environmental catastrophe in Pantanal has highlighted the fragility of environmental policies and practices for managing and fighting fires in this biome. Therefore, it is essential to know the causes and circumstances that potentiate these fires. This study aimed to: (I) assess the relationship between fire foci and carbon absorption (GPP), precipitation, and carbon dioxide (CO2) flux; (ii) analyze vegetation recovery using the differenced normalized burn ratio (ΔNBR) in Brazilian Pantanal between 2001 and 2022; and (iii) identify priority areas, where the highest intensities of fire foci have occurred, in order to guide public policies in Brazil to maintain local conservation. To this purpose, fire foci were detected using data from the MODIS MOD14/MYD14 algorithm, annual precipitation with CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data), and CO2 flux using the MODIS/MODO9A1 product, and Gross Primary Production (GPP) with the MODIS/MOD17A2 product. The severity of the burned area was also assessed using the ΔNBR index and the risk areas were determined using the averages of these images. During the time series studied, a total of 300,127 fire foci were detected throughout the Pantanal, where 2020 had the highest number of foci and the lowest accumulated precipitation. The years with the highest precipitation were 2014 and 2018. The year 2018 was also the second year with the highest GPP value. The Pettit test showed a trend for 2008 and 2011 as the points of change in the CO2 flux and GPP variables. Principal component analysis clustered fire foci and precipitation on opposite sides, as well as GPP and CO2 flux, while ΔNBR clustered HS, MHS and MLS classes with the years 2020, 2019, 2002 and 2021. There was a high negative correlation between fire foci × rainfall and GPP × CO2 flux. The years with the largest areas of High severity (HS), Moderate-high severity (MHS) and Moderate-low severity (MLS) classes were 2020 and 2019, respectively. The most vulnerable areas for severe fires were the municipalities of Cáceres, Poconé, and Corumbá. The major fire catastrophe in 2020 is correlated with the low precipitation in 2019, the high precipitation in 2018, and the increased GPP, as well government policies unfavorable to the environment.

2.
Sci Rep ; 11(1): 21792, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750464

RESUMO

The guidance on decision-making regarding deforestation in Amazonia has been efficient as a result of monitoring programs using remote sensing techniques. Thus, the objective of this study was to identify the expansion of soybean farming in disagreement with the Soy Moratorium (SoyM) in the Amazonia biome of Mato Grosso from 2008 to 2019. Deforestation data provided by two Amazonia monitoring programs were used: PRODES (Program for Calculating Deforestation in Amazonia) and ImazonGeo (Geoinformation Program on Amazonia). For the identification of soybean areas, the Perpendicular Crop Enhancement Index (PCEI) spectral model was calculated using a cloud platform. To verify areas (polygons) of largest converted forest-soybean occurrences, the Kernel Density (KD) estimator was applied. Mann-Kendall and Pettitt tests were used to identify trends over the time series. Our findings reveal that 1,387,288 ha were deforested from August 2008 to October 2019 according to PRODES data, of which 108,411 ha (7.81%) were converted into soybean. The ImazonGeo data showed 729,204 hectares deforested and 46,182 hectares (6.33%) converted into soybean areas. Based on the deforestation polygons of the two databases, the KD estimator indicated that the municipalities of Feliz Natal, Tabaporã, Nova Ubiratã, and União do Sul presented higher occurrences of soybean fields in disagreement with the SoyM. The results indicate that the PRODES system presents higher data variability and means statistically superior to ImazonGeo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...