Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 406, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987828

RESUMO

BACKGROUND: Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. RESULTS: We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. CONCLUSIONS: Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.


Assuntos
Escherichia coli , Corpos de Inclusão , Microscopia de Força Atômica , Análise de Célula Única , Espectrofotometria Infravermelho , Corpos de Inclusão/química , Escherichia coli/química , Microscopia de Força Atômica/métodos , Espectrofotometria Infravermelho/métodos , Análise de Célula Única/métodos
2.
Science ; 384(6699): eadd6260, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815015

RESUMO

Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-ß and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-ß and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cálcio , Homeostase , Fármacos Neuroprotetores , Septinas , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Modelos Animais de Doenças , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Septinas/metabolismo , Proteínas tau/metabolismo
3.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662570

RESUMO

MOTIVATION: Proteins, the molecular workhorses of biological systems, execute a multitude of critical functions dictated by their precise three-dimensional structures. In a complex and dynamic cellular environment, proteins can undergo misfolding, leading to the formation of aggregates that take up various forms, including amorphous and ordered aggregation in the shape of amyloid fibrils. This phenomenon is closely linked to a spectrum of widespread debilitating pathologies, such as Alzheimer's disease, Parkinson's disease, type-II diabetes, and several other proteinopathies, but also hampers the engineering of soluble agents, as in the case of antibody development. As such, the accurate prediction of aggregation propensity within protein sequences has become pivotal due to profound implications in understanding disease mechanisms, as well as in improving biotechnological and therapeutic applications. RESULTS: We previously developed Cordax, a structure-based predictor that utilizes logistic regression to detect aggregation motifs in protein sequences based on their structural complementarity to the amyloid cross-beta architecture. Here, we present a dedicated web server interface for Cordax. This online platform combines several features including detailed scoring of sequence aggregation propensity, as well as 3D visualization with several customization options for topology models of the structural cores formed by predicted aggregation motifs. In addition, information is provided on experimentally determined aggregation-prone regions that exhibit sequence similarity to predicted motifs, scores, and links to other predictor outputs, as well as simultaneous predictions of relevant sequence propensities, such as solubility, hydrophobicity, and secondary structure propensity. AVAILABILITY AND IMPLEMENTATION: The Cordax webserver is freely accessible at https://cordax.switchlab.org/.


Assuntos
Software , Agregados Proteicos , Internet , Amiloide/química , Proteínas/química , Motivos de Aminoácidos , Humanos , Conformação Proteica , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos
4.
Nat Commun ; 15(1): 1028, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310108

RESUMO

Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4's pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Doença de Alzheimer/genética , Amiloide/química , Proteínas Amiloidogênicas , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/genética , Proteínas tau/química , Tauopatias/genética , Tauopatias/patologia
5.
Sci Adv ; 10(5): eadk8173, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295165

RESUMO

The tendency for proteins to form aggregates is an inherent part of every proteome and arises from the self-assembly of short protein segments called aggregation-prone regions (APRs). While posttranslational modifications (PTMs) have been implicated in modulating protein aggregation, their direct role in APRs remains poorly understood. In this study, we used a combination of proteome-wide computational analyses and biophysical techniques to investigate the potential involvement of PTMs in aggregation regulation. Our findings reveal that while most PTM types are disfavored near APRs, N-glycosylation is enriched and evolutionarily selected, especially in proteins prone to misfolding. Experimentally, we show that N-glycosylation inhibits the aggregation of peptides in vitro through steric hindrance. Moreover, mining existing proteomics data, we find that the loss of N-glycans at the flanks of APRs leads to specific protein aggregation in Neuro2a cells. Our findings indicate that, among its many molecular functions, N-glycosylation directly prevents protein aggregation in higher eukaryotes.


Assuntos
Agregados Proteicos , Proteoma , Glicosilação , Proteoma/química , Peptídeos/química , Processamento de Proteína Pós-Traducional
6.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134874

RESUMO

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Assuntos
Neurônios , Células Piramidais , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Camundongos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
7.
Nat Rev Mol Cell Biol ; 24(12): 912-933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684425

RESUMO

Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.


Assuntos
Amiloide , Dobramento de Proteína , Conformação Proteica , Amiloide/metabolismo , Peptídeos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
8.
J Mol Biol ; 435(11): 168039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330291

RESUMO

Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.


Assuntos
Amiloide , Proteínas de Bactérias , Biofilmes , Proteínas de Escherichia coli , Escherichia coli , Peptídeos , Agregados Proteicos , Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Peptídeos/química , Peptídeos/farmacologia , Pseudomonas aeruginosa/metabolismo , Estabilidade Proteica
10.
PLoS One ; 18(3): e0283674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000776

RESUMO

The overconsumption and inappropriate use of antibiotics is escalating antibiotic resistance development, which is now one of the 10 top threats to global health. Introducing antibiotics with a novel mode of action into clinical use is urgently needed to address this issue. Deliberately inducing aggregation of target proteins and disrupting protein homeostasis in bacteria via amyloidogenic peptides, also called Pept-ins (from peptide interferors), can be lethal to bacteria and shows considerable promise as a novel antibiotic strategy. However, the translation of Pept-ins into the clinic requires further investigation into their mechanism of action and improvement of their therapeutic window. Therefore, we performed systematic structure modifications of 2 previously discovered Pept-ins, resulting in 179 derivatives, and investigated the corresponding impact on antimicrobial potency, cellular accumulation, and ability to induce protein aggregation in bacteria, in vitro aggregation property, and toxicity on mammalian cells. Our results show that both Pept-in accumulation and aggregation of target proteins in bacteria are requisite for Pept-in mediated antimicrobial activity. Improvement of these two parameters can be achieved via increasing the number of arginine residues, increasing Pept-in aggregation propensity, optimizing the aggregate core structure, adopting ß-turn linkers, or forming a disulphide bond. Correspondingly, improvement of these two parameters can enhance Pept-in antimicrobial efficacy against wildtype E. coli BL21 used in the laboratory as well as clinically isolated multidrug-resistant strain E. coli ATCC, A. baumannii, and K. pneumoniae.


Assuntos
Anti-Infecciosos , Escherichia coli , Animais , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Bactérias , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mamíferos
11.
Proc Natl Acad Sci U S A ; 120(9): e2214921120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812200

RESUMO

Mutant KRAS is a major driver of oncogenesis in a multitude of cancers but remains a challenging target for classical small molecule drugs, motivating the exploration of alternative approaches. Here, we show that aggregation-prone regions (APRs) in the primary sequence of the oncoprotein constitute intrinsic vulnerabilities that can be exploited to misfold KRAS into protein aggregates. Conveniently, this propensity that is present in wild-type KRAS is increased in the common oncogenic mutations at positions 12 and 13. We show that synthetic peptides (Pept-ins™) derived from two distinct KRAS APRs could induce the misfolding and subsequent loss of function of oncogenic KRAS, both of recombinantly produced protein in solution, during cell-free translation and in cancer cells. The Pept-ins exerted antiproliferative activity against a range of mutant KRAS cell lines and abrogated tumor growth in a syngeneic lung adenocarcinoma mouse model driven by mutant KRAS G12V. These findings provide proof-of-concept that the intrinsic misfolding propensity of the KRAS oncoprotein can be exploited to cause its functional inactivation.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Mutação , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Dobramento de Proteína
12.
Neuron ; 111(9): 1402-1422.e13, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827984

RESUMO

Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.


Assuntos
Doença de Parkinson , Animais , Humanos , Autofagia/genética , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
13.
Nature ; 612(7938): 123-131, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385530

RESUMO

Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva , Camundongos Transgênicos , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
14.
Mol Cancer Ther ; 21(12): 1823-1834, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36218067

RESUMO

Currently, all clinically used androgen receptor (AR) antagonists target the AR ligand-binding pocket and inhibit T and dihydrotestosterone (DHT) binding. Resistance to these inhibitors in prostate cancer frequently involves AR-dependent mechanisms resulting in a retained AR dependence of the tumor. More effective or alternative AR inhibitors are therefore required to limit progression in these resistant stages. Here, we applied the structural information of the ligand-binding domain (LBD) dimerization interface to screen in silico for inhibitors. A completely new binding site, the Dimerisation Inhibiting Molecules (DIM) pocket, was identified at the LBD dimerization interface. Selection of compounds that fit the DIM pocket via virtual screening identified the DIM20 family of compounds which inhibit AR transactivation and dimerization of the full-length AR as well as the isolated LBDs. Via biolayer interferometry, reversible dose-dependent binding to the LBD was confirmed. While DIM20 does not compete with 3H-DHT for binding in the LBP, it limits the maximal activity of the AR indicative of a noncompetitive binding to the LBD. DIM20 and DIM20.39 specifically inhibit proliferation of AR-positive prostate cancer cell lines, with only marginal effects on AR-negative cell lines such as HEK 293 and PC3. Moreover, combination treatment of DIM compounds with enzalutamide results in synergistic antiproliferative effects which underline the specific mechanism of action of the DIM compounds.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Ligantes , Dimerização , Células HEK293 , Antagonistas de Receptores de Andrógenos/farmacologia , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Antagonistas de Androgênios/farmacologia
15.
Biomacromolecules ; 23(9): 3779-3797, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027608

RESUMO

Highly ordered, straight amyloid fibrils readily lend themselves to structure determination techniques and have therefore been extensively characterized. However, the less ordered curly fibrils remain relatively understudied, and the structural organization underlying their specific characteristics remains poorly understood. We found that the exemplary curly fibril-forming protein ovalbumin contains multiple aggregation prone regions (APRs) that form straight fibrils when isolated as peptides or when excised from the full-length protein through hydrolysis. In the context of the intact full-length protein, however, the regions separating the APRs facilitate curly fibril formation. In fact, a meta-analysis of previously reported curly fibril-forming proteins shows that their inter-APRs are significantly longer and more hydrophobic when compared to straight fibril-forming proteins, suggesting that they may cause strain in the amyloid state. Hence, inter-APRs driving curly fibril formation may not only apply to our model protein but rather constitute a more general mechanism.


Assuntos
Amiloide , Amiloidose , Amiloide/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ovalbumina , Peptídeos/química
16.
Structure ; 30(8): 1178-1189.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35609599

RESUMO

The increasing number of amyloid structures offers an opportunity to investigate the general principles determining amyloid stability and polymorphism. We find that amyloid stability is dominated by ∼30% of residues localized in segments that favor the cross-ß conformation. These correspond to known aggregation-nucleating regions and constitute a stabilizing cross-ß structural framework that is shared among polymorphs. Alternative packing of these segments with structurally frustrated regions within the protofilament results in conformationally different, but energetically similar, polymorphs. Differential analysis of distributions of interatomic distances in amyloid and globular structures revealed that unconventional residue contacts, such as identical charges in close proximity, are located in energetically frustrated segments of amyloids. These observations suggest that polymorphism results from a framework mechanism consisting of conserved stabilizing regions of high cross-ß propensity. These are interspersed by structurally suboptimal regions that are potential sites of conformational plasticity and interaction with stabilizing cofactors such as (poly)ions.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Amiloide/química , Peptídeos beta-Amiloides/química , Conformação Proteica , Termodinâmica
17.
Nat Commun ; 13(1): 1351, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292653

RESUMO

Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression.


Assuntos
Amiloidose , Proteômica , Sequência de Aminoácidos , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos
18.
Bioinformatics ; 38(9): 2636-2638, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35199146

RESUMO

SUMMARY: Amyloid polymorphism is emerging as a key property that is differentially linked to various conformational diseases, including major neurodegenerative disorders, but also as a feature that potentially relates to complex structural mechanisms mediating transmissibility barriers and selective vulnerability of amyloids. In response to the rapidly expanding number of amyloid fibril structures formed by full-length proteins, we here have developed StAmP-DB, a public database that supports the curation and cross-comparison of experimentally determined three-dimensional amyloid polymorph structures. AVAILABILITY AND IMPLEMENTATION: StAmP-DB is freely accessible for queries and downloads at https://stamp.switchlab.org.


Assuntos
Amiloide , Doenças Neurodegenerativas , Humanos , Amiloide/química
19.
FEBS J ; 289(8): 2025-2046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460517

RESUMO

Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.


Assuntos
Amiloidose , Doenças Neurodegenerativas , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Amiloidose/genética , Humanos , Doenças Neurodegenerativas/genética
20.
Cell Death Differ ; 29(4): 788-805, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750538

RESUMO

Anti-apoptotic Bcl-2-family members not only act at mitochondria but also at the endoplasmic reticulum, where they impact Ca2+ dynamics by controlling IP3 receptor (IP3R) function. Current models propose distinct roles for Bcl-2 vs. Bcl-xL, with Bcl-2 inhibiting IP3Rs and preventing pro-apoptotic Ca2+ release and Bcl-xL sensitizing IP3Rs to low [IP3] and promoting pro-survival Ca2+ oscillations. We here demonstrate that Bcl-xL too inhibits IP3R-mediated Ca2+ release by interacting with the same IP3R regions as Bcl-2. Via in silico superposition, we previously found that the residue K87 of Bcl-xL spatially resembled K17 of Bcl-2, a residue critical for Bcl-2's IP3R-inhibitory properties. Mutagenesis of K87 in Bcl-xL impaired its binding to IP3R and abrogated Bcl-xL's inhibitory effect on IP3Rs. Single-channel recordings demonstrate that purified Bcl-xL, but not Bcl-xLK87D, suppressed IP3R single-channel openings stimulated by sub-maximal and threshold [IP3]. Moreover, we demonstrate that Bcl-xL-mediated inhibition of IP3Rs contributes to its anti-apoptotic properties against Ca2+-driven apoptosis. Staurosporine (STS) elicits long-lasting Ca2+ elevations in wild-type but not in IP3R-knockout HeLa cells, sensitizing the former to STS treatment. Overexpression of Bcl-xL in wild-type HeLa cells suppressed STS-induced Ca2+ signals and cell death, while Bcl-xLK87D was much less effective in doing so. In the absence of IP3Rs, Bcl-xL and Bcl-xLK87D were equally effective in suppressing STS-induced cell death. Finally, we demonstrate that endogenous Bcl-xL also suppress IP3R activity in MDA-MB-231 breast cancer cells, whereby Bcl-xL knockdown augmented IP3R-mediated Ca2+ release and increased the sensitivity towards STS, without altering the ER Ca2+ content. Hence, this study challenges the current paradigm of divergent functions for Bcl-2 and Bcl-xL in Ca2+-signaling modulation and reveals that, similarly to Bcl-2, Bcl-xL inhibits IP3R-mediated Ca2+ release and IP3R-driven cell death. Our work further underpins that IP3R inhibition is an integral part of Bcl-xL's anti-apoptotic function.


Assuntos
Apoptose , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Proteína bcl-X , Cálcio/metabolismo , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...