Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(11): 11454-66, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25353651

RESUMO

Studies of carbon nanotube (CNT) based composites have been unable to translate the extraordinary load-bearing capabilities of individual CNTs to macroscale composites such as yarns. A key challenge lies in the lack of understanding of how properties of filaments and interfaces across yarn hierarchical levels govern the properties of macroscale yarns. To provide insight required to enable the development of superior CNT yarns, we investigate the fabrication-structure-mechanical property relationships among CNT yarns prepared by different techniques and employ a Monte Carlo based model to predict upper bounds on their mechanical properties. We study the correlations between different levels of alignment and porosity and yarn strengths up to 2.4 GPa. The uniqueness of this experimentally informed modeling approach is the model's ability to predict when filament rupture or interface sliding dominates yarn failure based on constituent mechanical properties and structural organization observed experimentally. By capturing this transition and predicting the yarn strengths that could be obtained under ideal fabrication conditions, the model provides critical insights to guide future efforts to improve the mechanical performance of CNT yarn systems. This multifaceted study provides a new perspective on CNT yarn design that can serve as a foundation for the development of future composites that effectively exploit the superior mechanical performance of CNTs.

2.
ACS Appl Mater Interfaces ; 5(9): 3894-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23570335

RESUMO

We proposed an unconventional fabrication technique called spin-on nanoprinting (SNAP) to generate and transfer sub-100 nm preceramic polymer patterns onto flexible and rigid substrates. The dimensions of printed nanostructures are almost the same as those of the mold, since the ceramic precursor used is a liquid. The printed patterns can be used as a replica for printing second-generation structures using other polymeric materials or they can be further converted to desirable ceramic structures, which are very attractive for high-temperature and harsh environment applications. SNAP is an inexpensive parallel process and requires no special equipment for operation.

3.
ACS Nano ; 7(4): 3434-46, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23548065

RESUMO

Polymer composite yarns containing a high loading of double-walled carbon nanotubes (DWNTs) have been developed in which the inherent acrylate-based organic coating on the surface of the DWNT bundles interacts strongly with poly(vinyl alcohol) (PVA) through an extensive hydrogen-bond network. This design takes advantage of a toughening mechanism seen in spider silk and collagen, which contain an abundance of hydrogen bonds that can break and reform, allowing for large deformation while maintaining structural stability. Similar to that observed in natural materials, unfolding of the polymeric matrix at large deformations increases ductility without sacrificing stiffness. As the PVA content in the composite increases, the stiffness and energy to failure of the composite also increases up to an optimal point, beyond which mechanical performance in tension decreases. Molecular dynamics (MD) simulations confirm this trend, showing the dominance of nonproductive hydrogen bonding between PVA molecules at high PVA contents, which lubricates the interface between DWNTs.


Assuntos
Materiais Biomiméticos/química , Cristalização/métodos , Hidrogênio/química , Modelos Químicos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , , Animais , Ligação de Hidrogênio , Teste de Materiais , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
ACS Nano ; 4(11): 6463-76, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-20977259

RESUMO

The superior mechanical behavior of carbon nanotubes (CNT) and their electrical and thermal functionalities has motivated researchers to exploit them as building blocks to develop advanced materials. Here, we demonstrate high performance double-walled nanotube (DWNT)-polymer composite yarns formed by twisting and stretching of ribbons of randomly oriented bundles of DWNTs thinly coated with polymeric organic compounds. A multiscale in situ scanning electron microscopy experimental approach was implemented to investigate the mechanical performance of yarns and isolated DWNT bundles with and without polymer coatings. DWNT-polymer yarns exhibited significant ductility of ∼20%, with energy-to-failure of as high as ∼100 J g(-1), superior to previously reported CNT-based yarns. The enhanced ductility is not at the expense of strength, as yarns exhibited strength as high as ∼1.4 GPa. In addition, the significance of twisting on the densification of yarns and corresponding enhancement in the lateral interactions between bundles is identified. Experiments at nanometer and macroscopic length scales on DWNT-polymer yarns and bundles further enabled quantification of energy dissipation/storage mechanisms in the yarns during axial deformations. We demonstrate that while isolated DWNT bundles are capable of storing/dissipating up to ∼500 J g(-1) at failure, unoptimal load transfer between individual bundles prevents the stress build up in the yarns required for considerable energy storage at the bundle level. By contrast, through polymer lateral interactions, a much better performance is obtained with the majority of energy dissipated at failure being contributed by the interactions between the polymer coating and the DWNTs as compared to the direct van der Waals interactions between bundles.

5.
Phys Rev Lett ; 93(3): 035503, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323833

RESUMO

Quasi-one-dimensional water encapsulated inside single-walled carbon nanotubes, here referred to as nanotube water, was studied by neutron scattering. The results reveal an anomalously soft dynamics characterized by pliable hydrogen bonds, anharmonic intermolecular potentials, and large-amplitude motions in nanotube water. Molecular dynamics simulations consistently describe the observed phenomena and propose the structure of nanotube water, which comprises a square-ice sheet wrapped into a cylinder inside the carbon nanotube and interior molecules in a chainlike configuration.


Assuntos
Nanotubos de Carbono/química , Água/química , Simulação por Computador , Modelos Químicos , Nêutrons , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...