Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
J Mater Chem B ; 10(2): 224-235, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34846443

RESUMO

To alter the immunosuppressive tumor microenvironment (TME), we developed an immunostimulatory nanoparticle (NP) to reprogram a tumor's dysfunctional and inhibitory antigen-presenting cells (APCs) into properly activated APCs that stimulate tumor-reactive cytotoxic T cells. Importantly, systemic delivery allowed NPs to efficiently utilize the entire microvasculature and gain access into the majority of the perivascular TME, which coincided with the APC-rich tumor areas leading to uptake of the NPs predominantly by APCs. In this work, a 60 nm NP was loaded with a STING agonist, which triggered robust production of interferon ß, resulting in activation of APCs. In addition to untargeted NPs, we employed 'mainstream' ligands targeting fibronectin, αvß3 integrin and P-selectin that are commonly used to direct nanoparticles to tumors. Using the 4T1 mouse model, we assessed the microdistribution of the four NP variants in the tumor immune microenvironment in three different breast cancer landscapes, including primary tumor, early metastasis, and late metastasis. The different NP variants resulted in variable uptake by immune cell subsets depending on the organ and tumor stage. Among the NP variants, therapeutic studies indicated that the untargeted NPs and the integrin-targeting NPs exhibited a remarkable short- and long-term immune response and long-lasting antitumor effect.


Assuntos
Neoplasias da Mama/terapia , GMP Cíclico/análogos & derivados , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Nanopartículas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Linhagem Celular Tumoral , GMP Cíclico/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Nanoscale Adv ; 3(20): 5890-5899, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34746645

RESUMO

Iron oxide nanoparticles (IONPs) have often been investigated for tumor hyperthermia. IONPs act as heating foci in the presence of an alternating magnetic field (AMF). It has been shown that hyperthermia can significantly alter the tumor immune microenvironment. Typically, mild hyperthermia invokes morphological changes within the tumor, which elicits a secretion of inflammatory cytokines and tumor neoantigens. Here, we focused on the direct effect of IONP-induced hyperthermia on the various tumor-resident immune cell subpopulations. We compared direct intratumoral injection to systemic administration of IONPs followed by application of an external AMF. We used the orthotopic 4T1 mouse model, which represents aggressive and metastatic breast cancer with a highly immunosuppressive microenvironment. A non-inflamed and 'cold' microenvironment inhibits peripheral effector lymphocytes from effectively trafficking into the tumor. Using intratumoral or systemic injection, IONP-induced hyperthermia achieved a significant reduction of all the immune cell subpopulations in the tumor. However, the systemic delivery approach achieved superior outcomes, resulting in substantial reductions in the populations of both innate and adaptive immune cells. Upon depletion of the existing dysfunctional tumor-resident immune cells, subsequent treatment with clinically approved immune checkpoint inhibitors encouraged the repopulation of the tumor with 'fresh' infiltrating innate and adaptive immune cells, resulting in a significant decrease of the tumor cell population.

6.
Adv Ther (Weinh) ; 2(11)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32953978

RESUMO

Glioblastomas (GBMs) remain highly lethal. This partially stems from the presence of brain tumor initiating cells (BTICs), a highly plastic cellular subpopulation that is resistant to current therapies. In addition to resistance, the blood-brain barrier limits the penetration of most drugs into GBMs. To effectively deliver a BTIC-specific inhibitor to brain tumors, we developed a multicomponent nanoparticle, termed Fe@MSN, which contains a mesoporous silica shell and an iron oxide core. Fibronectin-targeting ligands directed the nanoparticle to the near-perivascular areas of GBM. After Fe@MSN particles deposited in the tumor, an external low-power radiofrequency (RF) field triggered rapid drug release due to mechanical tumbling of the particle resulting in penetration of high amounts of drug across the blood-brain tumor interface and widespread drug delivery into the GBM. We loaded the nanoparticle with the drug 1400W, which is a potent inhibitor of the inducible nitric oxide synthase (iNOS). It has been shown that iNOS is preferentially expressed in BTICs and is required for their maintenance. Using the 1400W-loaded Fe@MSN and RF-triggered release, in vivo studies indicated that the treatment disrupted the BTIC population in hypoxic niches, suppressed tumor growth and significantly increased survival in BTIC-derived GBM xenografts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...