Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(20): 3431-3442, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075815

RESUMO

We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.


Assuntos
Fibroblastos/patologia , Mutação da Fase de Leitura , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteoma/análise , Morte Súbita do Lactente/patologia , Animais , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Morte Súbita do Lactente/genética , Sequenciamento do Exoma , Peixe-Zebra
2.
Epigenetics ; 10(1): 92-101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565354

RESUMO

Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; ß-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9-16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways.


Assuntos
Metilação de DNA , Proteínas de Homeodomínio/genética , Meningomielocele/genética , Adulto , Animais , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/metabolismo , Humanos , Recém-Nascido , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Peixe-Zebra
3.
Blood ; 121(26): 5208-17, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23667054

RESUMO

Platelet endothelial aggregation receptor-1 (PEAR1) participates in platelet aggregation via sustaining αIIbß3 activation. To investigate the role of PEAR1 in platelet formation, we monitored and manipulated PEAR1 expression in vitro in differentiating human CD34(+) hematopoietic stem cells and in vivo in zebrafish embryos. PEAR1 expression rose during CD34(+) cell differentiation up to megakaryocyte (MK) maturation. Two different lentiviral short hairpin knockdowns of PEAR1 did not affect erythropoiesis in CD34(+) cells, but increased colony-forming unit MK cell numbers twofold vs control in clonogenic assays, without substantially modifying MK maturation. The PEAR1 knockdown resulted in a twofold reduction of the phosphatase and TENsin homolog (PTEN) phosphatase expression and modulated gene expression of several phosphatidylinositol 3-kinase (PI3K)-Akt and Notch pathway genes. In zebrafish, Pear1 expression increased progressively during the first 3 days of embryo development. Both ATG and splice-blocking PEAR1 morpholinos enhanced thrombopoiesis, without affecting erythropoiesis. Western blots of 3-day-old Pear1 knockdown zebrafish revealed elevated Akt phosphorylation, coupled to transcriptional downregulation of the PTEN isoform Ptena. Neutralization by morpholinos of Ptena, but not of Ptenb, phenocopied the Pear1 zebrafish knockdown and triggered enhanced Akt phosphorylation and thrombocyte formation. In summary, this is the first demonstration that PEAR1 influences the PI3K/PTEN pathway, a critical determinant of Akt phosphorylation, itself controlling megakaryopoiesis and thrombopoiesis.


Assuntos
Células-Tronco Hematopoéticas/citologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular/metabolismo , Trombopoese/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Hibridização In Situ , Megacariócitos/citologia , Megacariócitos/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Peixe-Zebra/metabolismo
4.
Hum Mol Genet ; 22(1): 61-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010472

RESUMO

Niemann-Pick type C is a lysosomal storage disease associated with mutations in NPC1 or NPC2, resulting in an accumulation of cholesterol in the endosomal-lysosomal system. Niemann-Pick type C has a clinical spectrum that ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease combined with remarkably, in some cases, hematological defects such as thrombocytopenia, anemia and petechial rash. A role of NPC1 in hematopoiesis was never shown. Here, we describe platelet function abnormalities in three unrelated patients with a proven genetic and biochemical NPC1 defect. Their platelets have reduced aggregations, P-selectin expression and ATP secretions that are compatible with the observed abnormal alpha and reduced dense granules as studied by electron microscopy and CD63 staining after platelet spreading. Their blood counts were normal. NPC1 expression was shown in platelets and megakaryocytes (MKs). In vitro differentiated MKs from NPC1 patients exhibit hyperproliferation of immature MKs with different CD63(+) granules and abnormal cellular accumulation of cholesterol as shown by filipin stainings. The role of NPC1 in megakaryopoiesis was further studied using zebrafish with GFP-labeled thrombocytes or DsRed-labeled erythrocytes. NPC1 depletion in zebrafish resulted in increased cell death in the brain and abnormal cellular accumulation of filipin. NPC1-depleted embryos presented with thrombocytopenia and mild anemia as studied by flow cytometry and real-time QPCR for specific blood cell markers. In conclusion, this is the first report, showing a role of NPC1 in platelet function and formation but further studies are needed to define how cholesterol storage interferes with these processes.


Assuntos
Plaquetas/fisiologia , Proteínas de Transporte/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Doença de Niemann-Pick Tipo C/sangue , Proteínas de Peixe-Zebra/fisiologia , Animais , Proteínas de Transporte/genética , Morte Celular , Diferenciação Celular , Criança , Feminino , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Trombocitopenia/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
5.
FASEB J ; 26(5): 2125-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22308195

RESUMO

RGS18 was originally identified as a R4 subfamily member of regulators of G-protein signaling (RGS) with specific expression in hematopoietic progenitors, myeloerythroid cells, and megakaryocytes, though its physiological role in hematopoiesis remained unknown. Here, we show that lentiviral RGS18 overexpression during differentiation of mouse Sca1(+) hematopoietic stem cells induced a 50% increase of megakaryocyte proliferation. RGS18 depletion in zebrafish results in thrombocytopenia, as 66 to 88% of the embryos lack thrombocytes after injection of an ATG or splice-blocking morpholino, respectively. These embryos have no defects in early hematopoiesis, erythropoiesis, or leukocyte number and migration. In addition, all RGS18 depleted embryos have curly tails and an almost absent response to acoustic stimuli. In situ hybridization in zebrafish, Xenopus, and mouse embryos shows RGS18 expression in thrombocytes and/or hematological tissues but also in brain and otic vesicles. RGS18 interferes with development of cilia in hair cells of the inner ear and neuromast cells. On the basis of literature evidence that RGS-R4 members interact with the G-protein-modulated Wnt/calcium pathway, Wnt5b- but not Wnt5a-depleted embryos phenocopy all RGS18 knockdown effects. In summary, our study is the first to show that RGS18 regulates megakaryopoiesis but also reveals its unexpected role in ciliogenesis, at least in lower vertebrates, via interference with Wnt signaling.


Assuntos
Cílios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mecanotransdução Celular , Megacariócitos/fisiologia , Animais , Sequência de Bases , Primers do DNA , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Camundongos , Proteínas RGS , Proteínas Wnt/metabolismo
6.
Pediatr Res ; 67(3): 314-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19924028

RESUMO

We describe a patient, who developed during the first week of life petechiae and hematomas caused by severe thrombocytopenia and gastrointestinal bleeding due to multiple small gastric hemangiomata. Bone marrow examination showed hypermegakaryocytosis and dysmegakaryopoiesis. Alloimmune thrombocytopenia was excluded. Only 3 y later, platelet counts normalized and bleedings disappeared but small skin hemangiomata remained. Electron microscopy showed enlarged round platelets with a paucity of alpha granules similar as in GATA1-deficient patients but no GATA1 mutation was found. Immunoblot analysis showed a strong interaction between patient Igs and recombinant GATA1, GATA2, and the N finger (Nf) of GATA1. The lymphocyte transformation test with recombinant GATA1Nf was positive. In vitro culturing of normal CD34 cells with purified patient Igs showed a decreased number of megakaryocyte colonies but an increased overall size of the colonies compared with control Igs. Mice injected with patient Igs showed a reduced platelet count compared with mice injected with control Igs. Thrombopoiesis was also reduced after injection of patient Igs in transgenic zebrafish compared with control Igs. In conclusion, this study is the first report of an anti-GATA1 autoantibody leading to severe thrombocytopenia and gastrointestinal bleeding from multiple pinpoint hemangiomata.


Assuntos
Autoanticorpos/sangue , Autoimunidade , Fator de Transcrição GATA1/imunologia , Hemorragia Gastrointestinal/imunologia , Neoplasias Gastrointestinais/imunologia , Hemangioma/imunologia , Trombocitopenia/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Pré-Escolar , Feminino , Fator de Transcrição GATA1/genética , Hemorragia Gastrointestinal/sangue , Hemorragia Gastrointestinal/terapia , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/terapia , Hemangioma/sangue , Humanos , Recém-Nascido , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Contagem de Plaquetas , Índice de Gravidade de Doença , Trombocitopenia/sangue , Trombocitopenia/terapia , Trombopoese , Transfecção , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...