Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37906973

RESUMO

Objective.We designed a geometrical solution for a small animal in-beam positron emission tomography (PET) scanner to be used in the project SIRMIO (Small animal proton irradiator for research in molecular image-guided radiation-oncology). The system is based on 56 scintillator blocks of pixelated LYSO crystals. The crystals are arranged providing a pyramidal-step shape to optimize the geometrical coverage in a spherical configuration.Approach.Different arrangements have been simulated and compared in terms of spatial resolution and sensitivity. The chosen setup enables us to reach a good trade-off between a solid angle coverage and sufficient available space for the integration of additional components of the first design prototype of the SIRMIO platform. The possibility of moving the mouse holder inside the PET scanner furthermore allows for achieving the optimum placement of the irradiation area for all the possible tumor positions in the body of the mouse. The work also includes a study of the scintillator material where LYSO and GAGG are compared with a focus on the random coincidence noise due to the natural radioactivity of Lutetium in LYSO, justifying the choice of LYSO for the development of the final system.Main results.The best imaging performance can be achieved with a sub-millimeter spatial resolution and sensitivity of 10% in the center of the scanner, as verified in thorough simulations of point sources. The simulation of realistic irradiation scenarios of proton beams in PMMA targets with/without air gaps indicates the ability of the proposed PET system to detect range shifts down to 0.2 mm.Significance.The presented results support the choice of the identified optimal design for a novel spherical in-beam PET scanner which is currently under commissioning for application to small animal proton and light ion irradiation, and which might find also application, e.g. for biological image-guidance in x-ray irradiation.


Assuntos
Prótons , Radioterapia Guiada por Imagem , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Desenho de Equipamento , Imagens de Fantasmas
2.
Nucl Instrum Methods Phys Res A ; 1043: 167464, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36345417

RESUMO

Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of ß +-radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign 11C and 10C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The ß +-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, ∼ 106 particle per spill for the 10C and ∼ 107 particle per spill for the 11C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.

3.
Front Oncol ; 11: 737050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504803

RESUMO

Several techniques are under development for image-guidance in particle therapy. Positron (ß+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by ß+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using ß+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.

4.
Acta Oncol ; 58(10): 1470-1475, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271091

RESUMO

Background: Precision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumor and normal tissue models in different microenvironments, to unravel complex mechanisms of radiation damage in target and non-target tissues and assess efficacy of novel therapeutic strategies. For photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds potential for an even superior outcome than photon therapy, no commercial system exists yet. Material and methods: The project SIRMIO (Small Animal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology) aims at realizing and demonstrating an innovative portable prototype system for precision image-guided small animal proton irradiation, suitable for installation at existing clinical treatment facilities. The proposed design combines precise dose application with in situ multi-modal anatomical image guidance and in vivo verification of the actual treatment delivery. Results and conclusions: This manuscript describes the status of the different components under development, featuring a dedicated beamline for degradation and focusing of clinical proton beams, along with novel detector systems for in situimaging and range verification. The foreseen workflow includes pre-treatment proton transmission imaging, complemented by ultrasonic tumor localization, for treatment planning and position verification, followed by image-guided delivery with on site range verification by means of ionoacoustics (for pulsed beams) and positron-emission-tomography (PET, for continuous beams). The proposed compact and cost-effective system promises to open a new era in small animal proton therapy research, contributing to the basic understanding of in vivo radiation action to identify areas of potential breakthroughs for future translation into innovative clinical strategies.


Assuntos
Modelos Animais , Terapia com Prótons/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Animais , Camundongos , Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...