Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0288136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467189

RESUMO

Hypothetically, a student could attend a class, listen to lectures, and pass the class without knowing or interacting with other students. What happens to the network when the classroom expectations change? For example, there is a coursework expectation that students exchange contact information, or the instructor uses collaborative learning practices. Or what if the principal investigator (PI) of a scientific team goes on a sabbatical? This study uses the framework of classrooms because of their relatability across science. We asked how do different instructor coursework expectations change network structures within a classroom or other learning environments? A social network survey was administered at the start and end of the semester (pre- and post-test) in six university sociology classrooms to explore how expectations impacted the communication and learning networks. We found practical changes in course expectations impact the communication and learning networks, suggesting that instructors, facilitators, and others could be the archintorTM (architect+instructor+facilitator) of the network. Understanding that expectations can impact a network's structure marks a paradigm shift in educational assessment approaches. If the archintorTM has identified the "optimal" network structure, then their task is to design expectations that result in specific interactions that ultimately improve student achievement and success. This work provides recommendations for classroom archintorsTM to create the most impactful classroom networks. Future research should extend beyond education and classroom networks and identify the best or desired networks in other areas like public policy, urban planning, and more. If these "optimal" networks were identified, an archintorTM could design a social network to solve wicked problems, manage a crisis, and create social change.


Assuntos
Aprendizagem , Motivação , Humanos , Estudantes , Avaliação Educacional , Inquéritos e Questionários , Ensino
2.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121140

RESUMO

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidade e Especificidade
3.
J Virol Methods ; 290: 114087, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33515663

RESUMO

The development of safe diagnostic protocols for working with SARS-CoV-2 clinical samples at Biosafety Level 2 (BSL2) requires understanding of the effect of heat-treatment on SARS-CoV-2 viability and downstream RT-PCR sensitivity. In this study heating SARS-CoV-2/England/2/2020 to 56 °C and 60 °C for 15, 30 and 60 min reduced the virus titre by between 2.1 and 4.9 log10 pfu/mL (as determined by plaque assay). Complete inactivation did not occur and there was significant variability between replicates. Viable virus was detected by plaque assay after heat-treatment at 80 °C for 15 or 30 min but not 60 or 90 min. After heat-treatment at 80 °C for 60 min infectious virus was only detected by more sensitive virus culture. No viable virus was detected after heating to 80 °C for 90 min or 95 °C for 1 or 5 min. RT-PCR sensitivity was not compromised by heating to 56 °C and 60 °C. However, RT-PCR sensitivity was reduced (≥3 Ct value increase) after heating the virus to 80 °C for 30 min or longer, or 95 °C for 1 or 5 min. In summary we found that the efficacy of heat-inactivation varies greatly depending on temperature and duration. Local validation of heat-inactivation and its effects downstream is therefore essential for molecular testing.


Assuntos
SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Inativação de Vírus , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Temperatura Alta , Humanos , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...