Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Adv ; 5(10): eaaw7879, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663017

RESUMO

Many species of motile phytoplankton can actively form long multicellular chains by remaining attached to one another after cell division. While chains swim more rapidly than single cells of the same species, chain formation also markedly reduces phytoplankton's ability to maintain their bearing. This suggests that turbulence, which acts to randomize swimming direction, could sharply attenuate a chain's ability to migrate between well-lit surface waters during the day and deeper nutrient-rich waters at night. Here, we use numerical models to investigate how chain formation affects the migration of phytoplankton through a turbulent water column. Unexpectedly, we find that the elongated shape of chains helps them travel through weak to moderate turbulence much more effectively than single cells, and isolate the physical processes that confer chains this ability. Our findings provide a new mechanistic understanding of how turbulence can select for phytoplankton with elongated morphologies and may help explain why turbulence triggers chain formation.


Assuntos
Fitoplâncton/fisiologia , Ecossistema , Movimentos da Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-25871205

RESUMO

Free-surface turbulence, albeit constrained onto a two-dimensional space, exhibits features that barely resemble predictions of simplified two-dimensional modeling. We demonstrate that, in a three-dimensional open channel flow, surface turbulence is characterized by upscale energy transfer, which controls the long-term evolution of the larger scales. We are able to associate downscale and upscale energy transfer at the surface with the two-dimensional divergence of velocity. We finally demonstrate that surface compressibility confirms the strongly three-dimensional nature of surface turbulence.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24125340

RESUMO

We study the dispersion of light particles floating on a flat shear-free surface of an open channel in which the flow is turbulent. This configuration mimics the motion of buoyant matter (e.g., phytoplankton, pollutants, or nutrients) in water bodies when surface waves and ripples are smooth or absent. We perform direct numerical simulation of turbulence coupled with Lagrangian particle tracking, considering different values of the shear Reynolds number (Re_{τ}=171 and 509) and of the Stokes number (0.06

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...