Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Rheumatol ; 6(5): e279-e290, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38658114

RESUMO

BACKGROUND: Childhood Sjögren's disease is a rare, underdiagnosed, and poorly-understood condition. By integrating machine learning models on a paediatric cohort in the USA, we aimed to develop a novel system (the Florida Scoring System) for stratifying symptomatic paediatric patients with suspected Sjögren's disease. METHODS: This cross-sectional study was done in symptomatic patients who visited the Department of Pediatric Rheumatology at the University of Florida, FL, USA. Eligible patients were younger than 18 years or had symptom onset before 18 years of age. Patients with confirmed diagnosis of another autoimmune condition or infection with a clear aetiological microorganism were excluded. Eligible patients underwent comprehensive examinations to rule out or diagnose childhood Sjögren's disease. We used latent class analysis with clinical and laboratory variables to detect heterogeneous patient classes. Machine learning models, including random forest, gradient-boosted decision tree, partial least square discriminatory analysis, least absolute shrinkage and selection operator-penalised ordinal regression, artificial neural network, and super learner were used to predict patient classes and rank the importance of variables. Causal graph learning selected key features to build the final Florida Scoring System. The predictors for all models were the clinical and laboratory variables and the outcome was the definition of patient classes. FINDINGS: Between Jan 16, 2018, and April 28, 2022, we screened 448 patients for inclusion. After excluding 205 patients due to symptom onset later than 18 years of age, we recruited 243 patients into our cohort. 26 patients were excluded because of confirmed diagnosis of a disorder other than Sjögren's disease, and 217 patients were included in the final analysis. Median age at diagnosis was 15 years (IQR 11-17). 155 (72%) of 216 patients were female and 61 (28%) were male, 167 (79%) of 212 were White, and 20 (9%) of 213 were Hispanic, Latino, or Spanish. The latent class analysis identified three distinct patient classes: class I (dryness dominant with positive tests, n=27), class II (high symptoms with negative tests, n=98), and class III (low symptoms with negative tests, n=92). Machine learning models accurately predicted patient class and ranked variable importance consistently. The causal graphical model discovered key features for constructing the Florida Scoring System. INTERPRETATION: The Florida Scoring System is a paediatrician-friendly tool that can be used to assist classification and long-term monitoring of suspected childhood Sjögren's disease. The resulting stratification has important implications for clinical management, trial design, and pathobiological research. We found a highly symptomatic patient group with negative serology and diagnostic profiles, which warrants clinical attention. We further revealed that salivary gland ultrasonography can be a non-invasive alternative to minor salivary gland biopsy in children. The Florida Scoring System requires validation in larger prospective paediatric cohorts. FUNDING: National Institute of Dental and Craniofacial Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Heart, Lung, and Blood Institute, and Sjögren's Foundation.


Assuntos
Aprendizado de Máquina , Síndrome de Sjogren , Humanos , Estudos Transversais , Criança , Feminino , Masculino , Adolescente , Síndrome de Sjogren/diagnóstico , Índice de Gravidade de Doença , Florida/epidemiologia
2.
medRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352364

RESUMO

Background-Research question: Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of mortality. Predicting mortality risk in COPD patients can be important for disease management strategies. Although scores for all-cause mortality have been developed previously, there is limited research on factors that may directly affect COPD-specific mortality. Study design-Methods: used probabilistic (causal) graphs to analyze clinical baseline COPDGene data, including demographics, spirometry, quantitative chest imaging, and symptom features, as well as gene expression data (from year-5). Results: We identified factors linked to all-cause and COPD-specific mortality. Although many were similar, there were differences in certain comorbidities (all-cause mortality model only) and forced vital capacity (COPD-specific mortality model only). Using our results, we developed VAPORED , a 7-variable COPD-specific mortality risk score, which we validated using the ECLIPSE 3-yr mortality data. We showed that the new model is more accurate than the existing ADO, BODE, and updated BODE indices. Additionally, we identified biological signatures linked to all-cause mortality, including a plasma cell mediated component. Finally, we developed a web page to help clinicians calculate mortality risk using VAPORED, ADO, and BODE indices. Interpretation: Given the importance of predicting COPD-specific and all-cause mortality risk in COPD patients, we showed that probabilistic graphs can identify the features most directly affecting them, and be used to build new, more accurate models of mortality risk. Novel biological features affecting mortality were also identified. This is an important step towards improving our identification of high-risk patients and potential biological mechanisms that drive COPD mortality.

3.
Placenta ; 143: 87-90, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866321

RESUMO

Trophoblast injury is central to clinically relevant placenta dysfunction. We hypothesized that the mRNA of primary human trophoblasts, exposed to distinct injuries in vitro, capture transcriptome patterns of placental biopsies obtained from common obstetrical syndromes. We deployed a CIBERSORTx deconvolution method to correlate trophoblastic RNAseq-based expression matrices with the transcriptome of omics-defined placental dysfunction patterns in vivo. We found distinct trophoblast injury patterns in placental biopsies from women with fetal growth restriction and a hypertensive disorder, or in biopsies clustered by their omics analysis. Our RNAseq data are useful for defining the contribution of trophoblast injuries to placental dysfunction syndromes.


Assuntos
Doenças Placentárias , Placenta , Feminino , Gravidez , Humanos , Placenta/metabolismo , Trofoblastos/metabolismo , Transcriptoma , Doenças Placentárias/patologia
4.
BMC Med ; 21(1): 349, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37679695

RESUMO

BACKGROUND: Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes. METHODS: Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters. RESULTS: Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups. CONCLUSIONS: Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Recém-Nascido , Feminino , Humanos , Teorema de Bayes , Multiômica , Síndrome , Biópsia , Retardo do Crescimento Fetal
5.
Nat Commun ; 13(1): 6789, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357394

RESUMO

Alterations in lipid metabolism have the potential to be markers as well as drivers of pathobiology of acute critical illness. Here, we took advantage of the temporal precision offered by trauma as a common cause of critical illness to identify the dynamic patterns in the circulating lipidome in critically ill humans. The major findings include an early loss of all classes of circulating lipids followed by a delayed and selective lipogenesis in patients destined to remain critically ill. The previously reported survival benefit of early thawed plasma administration was associated with preserved lipid levels that related to favorable changes in coagulation and inflammation biomarkers in causal modelling. Phosphatidylethanolamines (PE) were elevated in patients with persistent critical illness and PE levels were prognostic for worse outcomes not only in trauma but also severe COVID-19 patients. Here we show selective rise in systemic PE as a common prognostic feature of critical illness.


Assuntos
COVID-19 , Estado Terminal , Humanos , Lipidômica , Biomarcadores , Inflamação
6.
Patterns (N Y) ; 3(5): 100473, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35607614

RESUMO

High-dimensional cellular and molecular profiling of biological samples highlights the need for analytical approaches that can integrate multi-omic datasets to generate prioritized causal inferences. Current methods are limited by high dimensionality of the combined datasets, the differences in their data distributions, and their integration to infer causal relationships. Here, we present Essential Regression (ER), a novel latent-factor-regression-based interpretable machine-learning approach that addresses these problems by identifying latent factors and their likely cause-effect relationships with system-wide outcomes/properties of interest. ER can integrate many multi-omic datasets without structural or distributional assumptions regarding the data. It outperforms a range of state-of-the-art methods in terms of prediction. ER can be coupled with probabilistic graphical modeling, thereby strengthening the causal inferences. The utility of ER is demonstrated using multi-omic system immunology datasets to generate and validate novel cellular and molecular inferences in a wide range of contexts including immunosenescence and immune dysregulation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36778756

RESUMO

As the cost of high-throughput genomic sequencing technology declines, its application in clinical research becomes increasingly popular. The collected datasets often contain tens or hundreds of thousands of biological features that need to be mined to extract meaningful information. One area of particular interest is discovering underlying causal mechanisms of disease outcomes. Over the past few decades, causal discovery algorithms have been developed and expanded to infer such relationships. However, these algorithms suffer from the curse of dimensionality and multicollinearity. A recently introduced, non-orthogonal, general empirical Bayes approach to matrix factorization has been demonstrated to successfully infer latent factors with interpretable structures from observed variables. We hypothesize that applying this strategy to causal discovery algorithms can solve both the high dimensionality and collinearity problems, inherent to most biomedical datasets. We evaluate this strategy on simulated data and apply it to two real-world datasets. In a breast cancer dataset, we identified important survival-associated latent factors and biologically meaningful enriched pathways within factors related to important clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a patient (1) had Covid-19 and (2) would enter the ICU. Furthermore, we were able to associate factors with known Covid-19 related biological pathways.

8.
Res Sq ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33442677

RESUMO

Alterations in lipid metabolism have the potential to be markers as well as drivers of the pathobiology of acute critical illness. Here, we took advantage of the temporal precision offered by trauma as a common cause of critical illness to identify the dynamic patterns in the circulating lipidome in critically ill humans. The major findings include an early loss of all classes of circulating lipids followed by a delayed and selective lipogenesis in patients destined to remain critically ill. Early in the clinical course, Fresh Frozen Plasma administration led to improved survival in association with preserved lipid levels that related to favorable changes in coagulation and inflammation biomarkers. Late over-representation of phosphatidylethanolamines with critical illness led to the validation of a Lipid Reprogramming Score that was prognostic not only in trauma but also severe COVID-19 patients. Our lipidomic findings provide a new paradigm for the lipid response underlying critical illness.

9.
Sci Rep ; 11(1): 490, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436736

RESUMO

Experimental animal models to predict physiological responses to injury and stress in humans have inherent limitations. Therefore, the development of preclinical human models is of paramount importance. Ex vivo lung perfusion (EVLP) has typically been used to recondition donor lungs before transplantation. However, this technique has recently advanced into a model to emulate lung mechanics and physiology during injury. In the present study, we propose that the EVLP of diseased human lungs is a well-suited preclinical model for translational research on chronic lung diseases. Throughout this paper, we demonstrate this technique's feasibility in pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), emphysema, and non-disease donor lungs not suitable for transplantation. In this study, we aimed to perfuse the lungs for 6 h with the EVLP system. This facilitated a robust and continuous assessment of airway mechanics, pulmonary hemodynamics, gas exchange, and biochemical parameters. We then collected at different time points tissue biopsies of lung parenchyma to isolate RNA and DNA to identify each disease's unique gene expression. Thus, demonstrating that EVLP could successfully serve as a clinically relevant experimental model to derive essential insights into pulmonary pathophysiology and various human lung diseases.


Assuntos
Circulação Extracorpórea/métodos , Pneumopatias/fisiopatologia , Transplante de Pulmão , Pulmão/fisiologia , Preservação de Órgãos/normas , Doadores de Tecidos/provisão & distribuição , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão
10.
J Endod ; 37(2): 133-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21238791

RESUMO

INTRODUCTION: Immature teeth with open apices treated with conventional nonsurgical root canal treatment often have a poor prognosis as a result of the increased risk of fracture and susceptibility to recontamination. Regenerative endodontics represents a new treatment modality that focuses on reestablishment of pulp vitality and continued root development. This clinical procedure relies on the intracanal delivery of a blood clot (scaffold), growth factors (possibly from platelets and dentin), and stem cells. However, to date, the clinical presence of stem cells in the canal space after this procedure has not been demonstrated. The purpose of this clinical study was to evaluate whether regenerative endodontic procedures are able to deliver stem cells into the canal space of immature teeth in young patients and to identify the possible tissue origin for these cells. METHODS: After informed consent, the first appointment consisted of NaOCl irrigation and treatment with a triple antibiotic paste. One month later, the root canal space was irrigated with sterile saline, and bleeding was evoked with collection of samples on paper points. Real-time reverse-transcription polymerase chain reaction and immunocytochemistry were conducted to compare the gene transcripts and proteins found in the root canal sample with levels found in the systemic circulation. RESULTS: Molecular analyses of blood collected from the canal system indicated the significant accumulation of transcripts for the stem cell markers CD73 and CD105 (up to 600-fold), compared with levels found in the systemic blood. Furthermore, this effect was selective because there was no change in expression of the differentiation markers ALK-P, DSPP, ZBTB16, and CD14. Histologic analyses demonstrated that the delivered cells expressed both CD105 and STRO-1, markers for a subpopulation of mesenchymal stem cells. CONCLUSIONS: Collectively, these findings demonstrate that the evoked-bleeding step in regenerative procedures triggers the significant accumulation of undifferentiated stem cells into the canal space where these cells might contribute to the regeneration of pulpal tissues seen after antibiotic paste therapy of the immature tooth with pulpal necrosis.


Assuntos
Cavidade Pulpar/citologia , Necrose da Polpa Dentária/terapia , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/citologia , Periodontite Periapical/terapia , Tratamento do Canal Radicular/métodos , 5'-Nucleotidase/metabolismo , Adolescente , Antígenos CD/metabolismo , Curativos Biológicos , Movimento Celular , Criança , Necrose da Polpa Dentária/complicações , Endoglina , Feminino , Humanos , Masculino , Mandíbula , Maxila , Células-Tronco Mesenquimais/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Periodontite Periapical/complicações , Receptores de Superfície Celular/metabolismo , Medicina Regenerativa , Ápice Dentário/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...