Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162439

RESUMO

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Assuntos
Carbono , Ecossistema , Carbono/análise , Sequestro de Carbono , Clima , Mudança Climática , Florestas , Estados Unidos
3.
Proc Natl Acad Sci U S A ; 105(27): 9439-44, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18591652

RESUMO

Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.


Assuntos
Umidade , Comunicações Via Satélite/instrumentação , Árvores , Clima Tropical , Geografia
4.
Trends Ecol Evol ; 23(4): 182-3; author reply 183-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18295369

RESUMO

Landsat data have enabled continuous global monitoring of both human-caused and other land cover disturbances since 1972. Recently degraded performance and intermittent service of the Landsat 7 and Landsat 5 sensors, respectively, have raised concerns about the condition of global Earth observation programs. However, Landsat imagery is still useful for landscape change detection and this capability should continue into the foreseeable future.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/instrumentação , Ecossistema , Astronave
5.
Carbon Balance Manag ; 2: 7, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17650336

RESUMO

BACKGROUND: Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS). Tillage management scenarios included actual tillage management (ATM), conventional tillage (CT), and no-till (NT). RESULTS: Model simulations show that the average amount of C (kg C ha-1yr-1) released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. CONCLUSION: For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale.

6.
Environ Manage ; 34 Suppl 1: S1-13, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16044552

RESUMO

Ecoregions, i.e., areas exhibiting relative homogeneity of ecosystems, are units of analysis that are increasingly important in environmental assessment and management. Ecoregions provide a holistic framework for flexible, comparative analysis of complex environmental problems. Ecoregions mapping has intellectual foundations in both geography and ecology. However, a hallmark of ecoregions mapping is that it is a truly interdisciplinary endeavor that demands the integration of knowledge from a multitude of sciences. Geographers emphasize the role of place, scale, and both natural and social elements when delineating and characterizing regions. Ecologists tend to focus on environmental processes with special attention given to energy flows and nutrient cycling. Integration of disparate knowledge from the many key sciences has been one of the great challenges of ecoregions mapping, and may lie at the heart of the lack of consensus on the "optimal" approach and methods to use in such work. Through a review of the principal existing US ecoregion maps, issues that should be addressed in order to advance the state of the art are identified. Research related to needs, methods, data sources, data delivery, and validation is needed. It is also important that the academic system foster education so that there is an infusion of new expertise in ecoregion mapping and use.


Assuntos
Ecologia , Ecossistema , Geografia , Estados Unidos
7.
Environ Manage ; 34 Suppl 1: S89-110, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16044555

RESUMO

The United States has a highly varied landscape because of wide-ranging differences in combinations of climatic, geologic, edaphic, hydrologic, vegetative, and human management (land use) factors. Land uses are dynamic, with the types and rates of change dependent on a host of variables, including land accessibility, economic considerations, and the internal increase and movement of the human population. There is a convergence of evidence that ecoregions are very useful for organizing, interpreting, and reporting information about land-use dynamics. Ecoregion boundaries correspond well with patterns of land cover, urban settlement, agricultural variables, and resource-based industries. We implemented an ecoregion framework to document trends in contemporary land-cover and land-use dynamics over the conterminous United States from 1973 to 2000. Examples of results from six eastern ecoregions show that the relative abundance, grain of pattern, and human alteration of land-cover types organize well by ecoregion and that these characteristics of change, themselves, change through time.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Geografia , Densidade Demográfica , Agricultura , Cidades , Emprego , Humanos , Indústrias , Árvores , Estados Unidos
8.
Environ Manage ; 32(5): 572-88, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15015696

RESUMO

Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km x 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/and cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Planejamento Ambiental , Sistemas de Informação Geográfica , Monitoramento Ambiental , Agricultura Florestal , Sudeste dos Estados Unidos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...