Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 98(6): 2243-2270, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558208

RESUMO

In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.


Assuntos
Mudança Climática , Febre Grave com Síndrome de Trombocitopenia , Humanos , Ecologia , Biodiversidade , Biota , Ecossistema
2.
Nat Ecol Evol ; 5(3): 322-329, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495593

RESUMO

The unabating rise in the number of species introduced outside of their native range makes predicting the spread of alien species an urgent challenge. Most predictions use models of the ecological niche of a species to identify suitable areas for invasion, but these predictions may have limited accuracy. Here, using the global alien avifauna, we demonstrate an alternative approach for predicting alien spread based on the environmental resistance of the landscape. This approach does not require any information on the ecological niche of the invading species and, instead, uses gradients of biotic similarity among native communities in the invaded region to predict the most likely routes of spread. We show that environmental resistance predicts patterns of spread better than a null model of random dispersal or a model based on climate matching to the native range of each species. Applying this approach to simulate future spread reveals major regional differences in projected invasion risk, shaped by proximity to existing invasion hotspots as well as gradients in environmental resistance. Our results show how environmental resistance may provide a general and complementary approach for predicting invasion risk that can be rapidly deployed even when information on the niche or the identity of potential invaders is unknown.


Assuntos
Ecossistema , Espécies Introduzidas , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...