Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38138927

RESUMO

BACKGROUND: Stewart's approach is known to have better diagnostic accuracy for the identification of metabolic acid-base disturbances compared to traditional methods based either on plasma bicarbonate concentration ([HCO3-]) and anion gap (AG) or on base excess/deficit (BE). This study aimed to identify metabolic acid-base disorders using either Stewart's or traditional approaches in critically ill COVID-19 patients admitted to the ICU, to recognize potential hidden acid-base metabolic abnormalities and to assess the prognostic value of these abnormalities for patient outcome. METHODS: This was a single-center retrospective study, in which we collected data from patients with severe COVID-19 admitted to the ICU. Electronical files were used to retrieve data for arterial blood gases, serum electrolytes, and proteins and to derive [HCO3-], BE, anion gap (AG), AG adjusted for albumin (AGadj), strong ion difference, strong ion gap (SIG), and SIG corrected for water excess/deficit (SIGcorr). The acid-base status was evaluated in each patient using the BE, [HCO3-], and physicochemical approaches. RESULTS: We included 185 patients. The physicochemical approach detected more individuals with metabolic acid-base abnormalities than the BE and [HCO3-] approaches (p < 0.001), and at least one acid-base disorder was recognized in most patients. According to the physicochemical method, 170/185 patients (91.4%) had at least one disorder, as opposed to the number of patients identified using the BE 90/186 (48%) and HCO3 62/186 (33%) methods. Regarding the derived acid-base status variables, non-survivors had greater AGadj, (p = 0.013) and SIGcorr (p = 0.035) compared to survivors. CONCLUSIONS: The identification of hidden acid-base disturbances may provide a detailed understanding of the underlying conditions in patients and of the possible pathophysiological mechanisms implicated. The association of these acid-base abnormalities with mortality provides the opportunity to recognize patients at increased risk of death and support them accordingly.

2.
J Pers Med ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37373897

RESUMO

OBJECTIVE: The impact of severe infection from COVID-19 and the resulting need for life support in an ICU environment is a fact that caused immense pressure in healthcare systems around the globe. Accordingly, elderly people faced multiple challenges, especially after admission to the ICU. On this basis, we performed this study to assess the impact of age on COVID-19 mortality in critically ill patients. MATERIALS AND METHODS: In this retrospective study, we collected data from 300 patients who were hospitalized in the ICU of a Greek respiratory hospital. We split patients into two age groups using a threshold of 65 years old. The primary objective of the study was the survival of patients in a follow up period of 60 days after their admission to the ICU. Secondary objectives were to determine whether mortality is affected by other factors, including sepsis and clinical and laboratory factors, Charlson Comorbidity Index (CCI), APACHE II and d-dimers, CRP, etc. Results: The survival of all patients in the ICU was 75.7%. Those in the <65 years old age group expressed a survival rate of 89.3%, whereas those in the ≥65 years old age group had a survival rate of 58% (p-value < 0.001). In the multivariate Cox regression, the presence of sepsis and an increased CCI were independent predictors of mortality in 60 days (p-value < 0.001), while the age group did not maintain its statistical significance (p-value = 0.320). CONCLUSIONS: Age alone as a simple number is not capable of predicting mortality in patients with severe COVID-19 in the ICU. We must use more composite clinical markers that may better reflect the biological age of patients, such as CCI. Moreover, the effective control of infections in the ICU is of utmost importance for the survival of patients, since avoiding septic complications can drastically improve the prognosis of all patients, regardless of age.

3.
J Fungi (Basel) ; 8(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012869

RESUMO

BACKGROUND: COVID-19-associated fungal infections seem to be a concerning issue. The aim of this study was to assess the incidence of fungal infections, the possible risk factors, and their effect on outcomes of critically ill patients with COVID-19. METHODS: A retrospective observational study was conducted in the COVID-19 ICU of the First Respiratory Department of National and Kapodistrian University of Athens in Sotiria Chest Diseases Hospital between 27 August 2020 and 10 November 2021. RESULTS: Here, 178 patients were included in the study. Nineteen patients (10.7%) developed fungal infection, of which five had COVID-19 associated candidemia, thirteen had COVID-19 associated pulmonary aspergillosis, and one had both. Patients with fungal infection were younger, had a lower Charlson Comorbidity Index, and had a lower PaO2/FiO2 ratio upon admission. Regarding health-care factors, patients with fungal infections were treated more frequently with Tocilizumab, a high regimen of dexamethasone, continuous renal replacement treatment, and were supported more with ECMO. They also had more complications, especially infections, and subsequently developed septic shock more frequently. Finally, patients with fungal infections had a longer length of ICU stay, as well as length of mechanical ventilation, although no statistically significant difference was reported on 28-day and 90-day mortality. CONCLUSIONS: Fungal infections seem to have a high incidence in COVID-19 critically ill patients and specific risk factors are identified. However, fungal infections do not seem to burden on mortality.

4.
J Clin Med ; 11(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407625

RESUMO

Patients with severe COVID-19 belong to a population at high risk of invasive fungal infections (IFIs), with a reported incidence of IFIs in critically ill COVID-19 patients ranging between 5% and 26.7%. Common factors in these patients, such as multiple organ failure, immunomodulating/immunocompromising treatments, the longer time on mechanical ventilation, renal replacement therapy or extracorporeal membrane oxygenation, make them vulnerable candidates for fungal infections. In addition to that, SARS-CoV2 itself is associated with significant dysfunction in the patient's immune system involving both innate and acquired immunity, with reduction in both CD4+ T and CD8+ T lymphocyte counts and cytokine storm. The emerging question is whether SARS-CoV-2 inherently predisposes critically ill patients to fungal infections or the immunosuppressive therapy constitutes the igniting factor for invasive mycoses. To approach the dilemma, one must consider the unique pathogenicity of SARS-CoV-2 with the deranged immune response it provokes, review the well-known effects of immunosuppressants and finally refer to current literature to probe possible causal relationships, synergistic effects or independent risk factors. In this review, we aimed to identify the prevalence, risk factors and mortality associated with IFIs in mechanically ventilated patients with COVID-19.

6.
J Med Virol ; 92(11): 2866-2869, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32530507

RESUMO

Severe coronavirus disease (COVID-19) is characterized by an excessive proinflammatory cytokine storm, resulting in acute lung injury and development of acute respiratory distress syndrome (ARDS). The role of corticosteroids is controversial in severe COVID-19 pneumonia and associated hyper-inflammatory syndrome. We reported a case series of six consecutive COVID-19 patients with severe pneumonia, ARDS and laboratory indices of hyper-inflammatory syndrome. All patients were treated early with a short course of corticosteroids, and clinical outcomes were compared before and after corticosteroids administration. All patients evaded intubation and intensive care admission, ARDS resolved within 11.8 days (median), viral clearance was achieved in four patients within 17.2 days (median), and all patients were discharged from the hospital in 16.8 days (median). Early administration of short course corticosteroids improves clinical outcome of patients with severe COVID-19 pneumonia and evidence of immune hyperreactivity.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Esteroides/uso terapêutico , COVID-19/complicações , Síndrome da Liberação de Citocina/virologia , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros , Fatores de Tempo , Resultado do Tratamento
7.
J Clin Med ; 8(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739446

RESUMO

A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the "lung-gut axis", and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.

8.
Ann Thorac Med ; 14(4): 226-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620206

RESUMO

In daily clinical practice, radiologists and pulmonologists are faced with incidental radiographic findings of pulmonary nodules. Deciding how to manage these findings is very important as many of them may be benign and require no further action, but others may represent early disease and importantly early-stage lung cancer and require prompt diagnosis and definitive treatment. As the diagnosis of pulmonary nodules includes invasive procedures which can be relatively minimal, such as bronchoscopy or transthoracic aspiration or biopsy, but also more invasive procedures such as thoracic surgical biopsies, and as these procedures are linked to anxiety and to cost, it is important to have clearly defined algorithms for the description, management, and follow-up of these nodules. Clear algorithms for the imaging protocols and the management of positive findings should also exist in lung cancer screening programs, which are already established in the USA and which will hopefully be established worldwide. This article reviews current knowledge on nodule definition, diagnostic evaluation, and management based on literature data and mainly recent guidelines.

9.
Inflammation ; 41(5): 1873-1887, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974374

RESUMO

Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with strenuous contractions of the inspiratory muscles and increased negative intrathoracic pressures that act as an injurious stimulus to the lung. We have shown that IRB induces pulmonary inflammation in healthy animals. p38 kinase is activated in the lung under stress. We hypothesized that p38 is activated during IRB and contributes to IRB-induced pulmonary inflammation. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve. Resistance was connected to the inspiratory port to provoke a peak tidal inspiratory pressure 50% of maximum. Following 3 and 6 h of IRB, respiratory system mechanics were measured and bronchoalveolar lavage (BAL) was performed. Phosphorylated p38, TNF-α, and MIP-2α were detected in lung tissue. Lung injury was estimated histologically. SB203580 (p38 inhibitor) was administered prior to IRB (1 mg kg-1). Six hours of IRB increased phosphorylated p38 in the lung, compared with quietly breathing controls (p = 0.001). Six hours of IRB increased the numbers of macrophages and neutrophils (p = 0.01 and p = 0.005) in BAL fluid. BAL protein levels and lung elasticity increased after both 3 and 6 h IRB. TNF-α and MIP-2α increased after 6 h of IRB (p = 0.01 and p < 0.001, respectively). Increased lung injury score was detected at 6 h IRB. SB203580 administration blocked the increase of neutrophils and macrophages at 6 h IRB (p = 0.01 and p = 0.005 to 6 h IRB) but not the increase in BAL protein and elasticity. TNF-α, MIP-2α, and injury score at 6 h IRB returned to control. p38 activation contributes to IRB-induced pulmonary inflammation.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inalação , Pneumonia/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CXCL2/análise , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Lesão Pulmonar , Macrófagos , Neutrófilos , Pneumonia/etiologia , Piridinas/farmacologia , Ratos , Fator de Necrose Tumoral alfa/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Int J Chron Obstruct Pulmon Dis ; 12: 2207-2220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814849

RESUMO

INTRODUCTION: Resistive breathing (RB), a hallmark of obstructive airway diseases, is characterized by strenuous contractions of the inspiratory muscles that impose increased mechanical stress on the lung. RB is shown to induce pulmonary inflammation in previous healthy animals. Tiotropium bromide, an anticholinergic bronchodilator, is also shown to exert anti-inflammatory effects. The effect of tiotropium on RB-induced pulmonary inflammation is unknown. METHODS: Adult rats were anesthetized, tracheostomized and breathed spontaneously through a two-way non-rebreathing valve. Resistances were connected to the inspiratory and/or expiratory port, to produce inspiratory resistive breathing (IRB) of 40% or 50% Pi/Pi,max (40% and 50% IRB), expiratory resistive breathing (ERB) of 60% Pe/Pe,max (60% ERB) or combined resistive breathing (CRB) of both 40% Pi/Pi,max and 60% Pe/Pe,max (40%/60% CRB). Tiotropium aerosol was inhaled prior to RB. After 6 h of RB, mechanical parameters of the respiratory system were measured and bronchoalveolar lavage (BAL) was performed. IL-1ß and IL-6 protein levels were measured in lung tissue. Lung injury was estimated histologically. RESULTS: In all, 40% and 50% IRB increased macrophage and neutrophil counts in BAL and raised IL-1ß and IL-6 lung levels, tissue elasticity, BAL total protein levels and lung injury score. Tiotropium attenuated BAL neutrophil number, IL-1ß, IL-6 levels and lung injury score increase at both 40% and 50% IRB. The increase in macrophage count and protein in BAL was only reversed at 40% IRB, while tissue elasticity was not affected. In all, 60% ERB raised BAL neutrophil count and total protein and reduced macrophage count. IL-1ß and IL-6 levels and lung injury score were increased. Tiotropium attenuated these alterations, except for the decrease in macrophage count and the increase in total protein level. In all, 40%/60% CRB increased macrophage and neutrophil count in BAL, IL-1ß and IL-6 levels, tissue elasticity, total protein in BAL and histological injury score. Tiotropium attenuated the aforementioned alterations. CONCLUSION: Tiotropium inhalation attenuates RB-induced pulmonary inflammation.


Assuntos
Resistência das Vias Respiratórias , Anti-Inflamatórios/administração & dosagem , Pneumopatias Obstrutivas/prevenção & controle , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Pneumonia/prevenção & controle , Ventilação Pulmonar , Respiração Artificial/efeitos adversos , Brometo de Tiotrópio/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumopatias Obstrutivas/etiologia , Pneumopatias Obstrutivas/metabolismo , Pneumopatias Obstrutivas/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Ratos , Índice de Gravidade de Doença
11.
Artigo em Inglês | MEDLINE | ID: mdl-27499619

RESUMO

Combined resistive breathing (CRB) is the hallmark of obstructive airway disease pathophysiology. We have previously shown that severe inspiratory resistive breathing (IRB) induces acute lung injury in healthy rats. The role of expiratory resistance is unknown. The possibility of a load-dependent type of resistive breathing-induced lung injury also remains elusive. Our aim was to investigate the differential effects of IRB, expiratory resistive breathing (ERB), and CRB on healthy rat lung and establish the lowest loads required to induce injury. Anesthetized tracheostomized rats breathed through a two-way valve. Varying resistances were connected to the inspiratory, expiratory, or both ports, so that the peak inspiratory pressure (IRB) was 20%-40% or peak expiratory (ERB) was 40%-70% of maximum. CRB was assessed in inspiratory/expiratory pressures of 30%/50%, 40%/50%, and 40%/60% of maximum. Quietly breathing animals served as controls. At 6 hours, respiratory system mechanics were measured, and bronchoalveolar lavage was performed for measurement of cell and protein concentration. Lung tissue interleukin-6 and interleukin-1ß levels were estimated, and a lung injury histological score was determined. ERB produced significant, load-independent neutrophilia, without mechanical or permeability derangements. IRB 30% was the lowest inspiratory load that provoked lung injury. CRB increased tissue elasticity, bronchoalveolar lavage total cell, macrophage and neutrophil counts, protein and cytokine levels, and lung injury score in a dose-dependent manner. In conclusion, CRB load dependently deranges mechanics, increases permeability, and induces inflammation in healthy rats. ERB is a putative inflammatory stimulus for the lung.


Assuntos
Lesão Pulmonar Aguda/etiologia , Resistência das Vias Respiratórias , Expiração , Inalação , Pulmão/fisiopatologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Água Extravascular Pulmonar/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Peroxidase/metabolismo , Pneumonia/etiologia , Pneumonia/fisiopatologia , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Ratos Wistar , Fatores de Tempo , Trabalho Respiratório
12.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L683-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25595645

RESUMO

Inspiratory resistive breathing (IRB) is characterized by large negative intrathoracic pressures and was shown to induce pulmonary inflammation in previously healthy rats. Matrix metalloproteinases (MMP)-9 and -12 are induced by inflammation and mechanical stress in the lung. We hypothesized that IRB induces MMP-9 and -12 in the lung. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve, connected to an inspiratory resistance, with the tidal inspiratory tracheal pressure set at 50% of the maximum. Quietly breathing animals served as controls. After 3 and 6 h of IRB, respiratory mechanics were measured, bronchoalveolar lavage (BAL) was performed, lung injury score was estimated, and lung MMP-9 was estimated by zymography and ELISA. MMP-9 and MMP-12 immunohistochemistry was performed. Isolated normal alveolar macrophages were incubated with BAL from rats that underwent IRB. After 18 h, MMP-9 and -12 levels were measured in supernatants, and immunocytochemistry was performed. Macrophages were treated with IL-1ß, IL-6, or TNF-α, and MMP-9 in supernatants was measured. After 6 h of IRB, leukocytes in BAL increased, and IL-1ß and IL-6 levels were elevated. Elasticity and injury score were increased after 3 and 6 h of IRB. Lung MMP-9 levels increased after 6 h of IRB. MMP-9 and MMP-12 were detected in alveolar macrophages and epithelial (bronchial/alveolar) cells after 3 and 6 h of IRB. MMP-9 and MMP-12 were found in supernatants after treatment with 6 h of IRB BAL. Cytosolic immunostaining was detected after treatment with 3 and 6 h of IRB BAL. All cytokines induced MMP-9 in culture supernatants. In conclusion, IRB induces MMP-9 and -12 in the lung of previously healthy rats.


Assuntos
Dispneia/enzimologia , Pulmão/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Células Cultivadas , Indução Enzimática , Feminino , Macrófagos Alveolares/enzimologia , Transporte Proteico , Ratos Wistar , Respiração
13.
Am J Respir Cell Mol Biol ; 52(6): 762-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25353067

RESUMO

Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.


Assuntos
Guanilato Ciclase/metabolismo , Pneumopatias Obstrutivas/enzimologia , Lesão Pulmonar/enzimologia , Resistência das Vias Respiratórias , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Guanilato Ciclase/antagonistas & inibidores , Pneumopatias Obstrutivas/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL
14.
Exp Biol Med (Maywood) ; 238(2): 209-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23576803

RESUMO

Intratracheal administration of lipopolysaccharide (LPS) in animals is a commonly used model of acute lung injury, characterized by increased alveolar-capillary membrane permeability causing protein-rich edema, inflammation, deterioration of lung mechanical function and impaired gas exchange. Technetium-99-m-labeled diethylene-triamine pentaacetatic acid ((99m)Tc-DTPA) scintigraphy is a non-invasive technique to assess lung epithelial permeability. We hypothesize that the longer the exposure and the higher the dose of LPS the greater the derangement of the various indices of lung injury. After 3, 6 and 24 h of 5 or 40 µg LPS intratracheally administration, (99m)Tc-DTPA was instilled in the lung. Images were acquired for 90 min with a γ-camera and the radiotracer clearance was estimated. In another subgroup, the mechanical properties of the respiratory system were estimated with the forced oscillation technique and static pressure-volume curves, 4.5, 7.5 and 25.5 h post-LPS (iso-times with the end of (99m)Tc-DTPA scintigraphy). Bronchoalveolar lavage (BAL) was performed and a lung injury score was estimated by histology. Lung myeloperoxidase (MPO) activity was measured. (99m)Tc-DTPA clearance increased in all LPS challenged groups compared with control. DTPA clearance presented a U-shape time course at the lower dose, while LPS had a declining effect over time at the larger dose. At 7.5 and 25.5 h post-LPS, tissue elasticity was increased and static compliance decreased at both doses. Total protein in the BAL fluid increased at both doses only at 4.5 h Total lung injury score and MPO activity were elevated in all LPS-treated groups. There is differential time- and dose-dependency of the various indices of lung injury after intratracheally LPS instillation in rats.


Assuntos
Lipopolissacarídeos/toxicidade , Pneumonia/patologia , Sistema Respiratório/fisiopatologia , Pentetato de Tecnécio Tc 99m/farmacocinética , Animais , Líquido da Lavagem Broncoalveolar/química , Elasticidade , Histocitoquímica , Lipopolissacarídeos/administração & dosagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Taxa de Depuração Metabólica , Peroxidase/análise , Proteínas/análise , Radiografia , Cintilografia/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...