Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(4): 1753-1758, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633998
2.
ACS Nano ; 18(13): 9389-9402, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507591

RESUMO

Degradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine operando electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI. By adding representative concentrations of Ni2+, Mn2+, and Co2+ ions into a commercially relevant battery electrolyte, the impacts of each on the formation and stability of the anode interface layer is revealed; all are shown to pose a threat to battery performance and stability. Mn2+, in particular, is shown to induce a thick, soft, and unstable SEI layer, which is known to cause severe degradation of batteries, while Co2+ and Ni2+ significantly impact interfacial conductivity. When transition metal ions are mixed, SEI degradation is amplified, suggesting a synergistic effect on the cell stability. Hence, by uncovering the roles these cathode degradation products play in operational batteries, we have provided a foundation upon which strategies to mitigate or eliminate these degradation products can be developed.

3.
ACS Energy Lett ; 8(8): 3437-3442, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588016

RESUMO

Epitaxial cathodes in lithium-ion microbatteries are ideal model systems to understand mass and charge transfer across interfaces, plus interphase degradation processes during cycling. Importantly, if grown at <450 °C, they also offer potential for complementary metal-oxide-semiconductor (CMOS) compatible microbatteries for the Internet of Things, flexible electronics, and MedTech devices. Currently, prominent epitaxial cathodes are grown at high temperatures (>600 °C), which imposes both manufacturing and scale-up challenges. Herein, we report structural and electrochemical studies of epitaxial LiMn2O4 (LMO) thin films grown on a new current collector material, NiCo2O4 (NCO). We achieve this at the low temperature of 360 °C, ∼200 °C lower than existing current collectors SrRuO3 and LaNiO3. Our films achieve a discharge capacity of >100 mAh g-1 for ∼6000 cycles with distinct LMO redox signatures, demonstrating long-term electrochemical stability of our NCO current collector. Hence, we show a route toward high-performance microbatteries for a range of miniaturized electronic devices.

4.
ACS Appl Mater Interfaces ; 13(3): 4117-4125, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428400

RESUMO

Micro-solid oxide fuel cells based on thin films have strong potential for use in portable power devices. However, devices based on silicon substrates typically involve thin-film metallic electrodes which are unstable at high temperatures. Devices based on bulk metal substrates overcome these limitations, though performance is hindered by the challenge of growing state-of-the-art epitaxial materials on metals. Here, we demonstrate for the first time the growth of epitaxial cathode materials on metal substrates (stainless steel) commercially supplied with epitaxial electrolyte layers (1.5 µm (Y2O3)0.15(ZrO2)0.85 (YSZ) + 50 nm CeO2). We create epitaxial mesoporous cathodes of (La0.60Sr0.40)0.95Co0.20Fe0.80O3 (LSCF) on the substrate by growing LSCF/MgO vertically aligned nanocomposite films by pulsed laser deposition, followed by selectively etching out the MgO. To enable valid comparison with the literature, the cathodes are also grown on single-crystal substrates, confirming state-of-the-art performance with an area specific resistance of 100 Ω cm2 at 500 °C and activation energy down to 0.97 eV. The work marks an important step toward the commercialization of high-performance micro-solid oxide fuel cells for portable power applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...