Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 73(4): 895-912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252133

RESUMO

Anthropogenic vectors (transfer mechanisms) can facilitate the introduction and spread of aquatic disease in marine farming regions. Preventing or interrupting pathogen transfers associated with movements of these vectors is key to ensuring productivity and profitability of aquaculture operations. However, practical methods to identify and manage vector risks are lacking. We developed a risk analysis framework to identify disease risks and management gaps associated with anthropogenic vector movements in New Zealand's main aquaculture sectors - Chinook salmon (Oncorhynchus tshawytscha), green-lipped mussels (Perna canaliculus), and Pacific oysters (Crassostrea gigas). Vectors within each sector were identified and assigned categorical risk scores for (i) movement characteristics (size, frequency, likelihood of return to sea), (ii) biological association with pathogens (entrainment potential, contribution to previous aquaculture disease outbreaks) and (iii) available best practice biosecurity methods and tools, to inform unmitigated and mitigated risk rankings. Thirty-one vectors were identified to operate within the national network and association with livestock was found to be a primary driver of vector risk rankings. Movements of live growing stock and culture substrates (e.g., mussel ropes) in shellfish farming had high-risk vector profiles that are logistically challenging to address, while vessel vectors were identified as the salmon farming sector's priority. The framework and rankings can be used to inform both research and management priorities in aquaculture and other primary production systems, including risk validation, vector roles in disease epidemiology, compliance with permit conditions, policy development, and treatment options.


Assuntos
Aquicultura , Ecologia , Frutos do Mar , Fatores de Risco , Medição de Risco
2.
J Fish Dis ; 47(3): e13900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38058214

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand are known to develop abnormal spinal curvature late in seawater production. Its cause is presently unknown, but there is evidence to suggest a neuromuscular pathology. Using magnetic resonance imaging (MRI), we evaluated the relationship between soft tissue pathology and spinal curvature in farmed Chinook salmon. Regions of interest (ROIs) presenting as pathologic MRI signal hyper-intensity were identified from scans of 24 harvest-sized individuals: 13 with radiographically-detectable spinal curvature and 11 without. ROIs were excised from individuals using anatomical landmarks as reference points and histologically analysed. Pathologic MRI signal was observed more frequently in individuals with radiographic curvature (92%, n = 12) than those without (18%, n = 2), was localized to the peri-vertebral connective tissues and musculature, and presented as three forms: inflammation, fibrosis, or both. These pathologies are consistent with a chronic inflammatory process, such as that observed during recovery from a soft tissue injury, and suggest spinal curvature in farmed Chinook salmon may be associated with damage to and/or compromised integrity of the peri-vertebral soft tissues. Future research to ascertain the contributing factors is required.


Assuntos
Doenças dos Peixes , Curvaturas da Coluna Vertebral , Humanos , Animais , Salmão , Doenças dos Peixes/diagnóstico por imagem , Doenças dos Peixes/patologia , Coluna Vertebral , Inflamação/diagnóstico por imagem , Inflamação/veterinária
3.
J Fish Dis ; 42(7): 965-974, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31131473

RESUMO

Vertebral fusions are an established economic concern in farmed Atlantic salmon, but have not been studied in detail in farmed Chinook salmon. Two radiographic studies of vertebral fusions were performed in farmed Chinook salmon. Sixteen of 1,301 (1.2%) smolt and 201 of 2,636 (7.6%) harvest fish had fusions. There were no significant differences in the number of fused vertebrae/fusion in smolt compared with harvest fish. Secondly, tagged fish were repeatedly radiographed to determine the progression of the fusions. Nineteen (4.4%), 23 (5.3%) and 39 (9.0%) fish had fusions as smolt, after 129 days in sea water, and at harvest, respectively. There were no significant differences in the average number of vertebra/fusion between the three time points. Of the fusions that were observed in smolt, additional vertebra did not become fused in 81% of the lesions. Within the rare fusions that did progress due to the involvement of adjacent vertebra, an average of 1.6 vertebrae were added per year. Fish with fusions were significantly lighter than non-affected fish at harvest. Fusions are common in farmed Chinook salmon; however, they are typically stable after development. As fish with fusions were lighter at harvest, reducing fusions may have an economic benefit.


Assuntos
Aquicultura , Doenças dos Peixes/patologia , Salmão/anormalidades , Coluna Vertebral/anormalidades , Animais , Feminino , Nova Zelândia , Salmão/crescimento & desenvolvimento , Coluna Vertebral/diagnóstico por imagem
4.
Dis Aquat Organ ; 121(3): 211-221, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786159

RESUMO

Vertebral column lordosis, kyphosis and scoliosis (LKS) can result in downgrading of farmed Chinook salmon Oncorhynchus tshawytscha in New Zealand. No cause of LKS has been identified. Radiography and histology were used to quantify LKS and perivertebral fibrosis in 27 fish with LKS visible at harvest and 30 visually normal fish from 3 New Zealand farms. Radiographic LKS was present in all 27 fish with LKS and in 18 of 30 fish without visible LKS. Quantification of the radiographic severity revealed significantly higher radiographic severity scores in fish with visible LKS (mean ± SD = 5.89 ± 2.41) than in fish with no visible, but radiographic LKS (1.44 ± 0.86, p < 0.001). The most frequent histological finding was unilateral perivertebral fibrosis that often extended into the horizontal septum and adjacent myomeres resulting in separation or loss of myocytes. Fibrosis was visible in all fish with LKS and in 12 of 30 fish without visible LKS. Fibrosis scores were higher in fish with visible LKS (3.32 ± 1.71) than in fish without visible LKS (0.35 ± 0.57, p < 0.001). The radiographic LKS severity scores were significantly correlated to the fibrosis scores (R2 = 0.59 p < 0.001) in the fish. Histology of other tissues revealed multifocal inflammation within muscle, peripheral connective tissues and myocardium which were considered most likely incidental in these fish. In this study, LKS was consistently and significantly associated with perivertebral fibrosis, suggesting that perivertebral fibrosis is an important process in the development of LKS. Further research to determine the cause of the fibrosis is required.


Assuntos
Fibrose/veterinária , Doenças dos Peixes/congênito , Salmão/anormalidades , Curvaturas da Coluna Vertebral/veterinária , Animais , Aquicultura , Fibrose/patologia , Curvaturas da Coluna Vertebral/epidemiologia , Curvaturas da Coluna Vertebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...