Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 8: 315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572772

RESUMO

There is evidence suggesting that exercise training (ET) acts as a factor toward resistance to Trypanosoma cruzi infection. However, the effects of mean arterial pressure (MAP), heart rate (HR), and nitric oxide (NO) during the acute phase of infection has not been elucidated yet. Swiss mice were randomly assigned into four groups: sedentary control (SC, n = 30), trained control (TC, n = 30), sedentary infected (SI, n = 30), and trained infected (TI, n = 30). ET was performed on the treadmill for 9 weeks. After training, the mice were infected with 5 × 103 trypomastigotes of T. cruzi (Y strain) or PBS. We observed resting bradycardia and improved performance in trained animals compared with sedentary ones. On the 20th day post-infection (DPI), we found a decrease in HR in SI animals compared to TI animals (699.73 ± 42.37 vs. 742.11 ± 25.35 bpm, respectively, P < 0.05). We also observed increased production of NO in cardiac tissue on the 20th DPI in the SI group, normalized in TI group (20.73 ± 2.74 vs. 6.51 ± 1.19 µM, respectively). Plasma pro-inflammatory cytokines (IL-12, TNF-α, IFN-γ,) and MCP-1 were increased in SI animals, but decreased in TI animals. The increase in parasitemia on the 15th and 17th DPI in the SI group was attenuated in the TI group. Our results suggest that previous ET plays a preventive role in resistance to T. cruzi infection, modulating cardiovascular aspects, inflammatory reaction, and NO levels of infected mice.

2.
Nutr Res ; 41: 73-85, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28506517

RESUMO

Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) are known to modulate a variety of immune cell functions. On occasion, this has led to diminished host resistance to certain viral and bacterial infections. Little is known about the impact of n-3 PUFA on host resistance to parasitic infection, however, based on results from a small study conducted more than two decades ago, we hypothesized that providing mice LC n-3 PUFA will diminish host resistance to Trypanosoma cruzi, the parasitic pathogen responsible for Chagas disease. To investigate this, C57BL/6 mice were supplemented by gavage (0.6% v/w) with phosphate-buffered saline, corn oil (CO), or menhaden fish oil (FO, a fat source rich in LC n-3 PUFA) for 15 days prior to T cruzi (Y strain) challenge and throughout the acute phase of infection. FO supplementation was associated with a transient 2-fold greater peak of blood parasitemia at 7 days postinfection (dpi), whereas subsequent cardiac parasitemia was ~60% lower at 12 dpi. FO treatment also ameliorated the leukopenia and thrombocytopenia observed in the early stages of a T cruzi infection. FO supplementation reduced circulating and cardiac nitric oxide at 7 and 12 dpi, respectively. FO supplementation altered ex vivo prostaglandin E2 and cytokine and chemokine production by splenocytes isolated from uninfected and infected mice. Overall, our results suggest that oral administration of LC n-3 PUFA from FO can have beneficial effects on the host in the early course of a T cruzi infection.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Doenças Parasitárias/tratamento farmacológico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Animais , Antígenos de Protozoários/sangue , Doença Crônica , Óleo de Milho/administração & dosagem , Dinoprostona/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo
3.
Antimicrob Agents Chemother ; 58(10): 6157-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092706

RESUMO

The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite's life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host's cyclooxygenase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib) caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO and interleukin-1ß and decreased production of transforming growth factor ß (TGF-ß) by cells. Taken together, these results indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a better understanding of the influence of TGF-ß-interfering therapies on the innate inflammatory response to T. cruzi infection and may represent a very pertinent target for new therapeutic treatments of Chagas disease.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Mioblastos Cardíacos/parasitologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Celecoxib , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunidade Inata/efeitos dos fármacos , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Pirazóis/farmacologia , Ratos , Sulfonamidas/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...