Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2692, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177639

RESUMO

Rodents living alongside humans increases the probability of encounter and also the transmission of rodent-borne diseases. Singapore's cosmopolitan urban landscape provides a perfect setting to study the prevalence of four rodent-borne pathogens: Seoul hantavirus (SEOV), Leptospira species, Rickettsia typhi and Yersinia pestis, and identify the potential risk factors which may influence rodent density and transmission of rodent-borne diseases. A total of 1143 rodents were trapped from 10 unique landscape structures throughout Singapore. Real-time quantitative Polymerase Chain Reactions were used to detect pathogenic and intermediate Leptospira spp. and Yersinia pestis, whereas the seroprevalence of SEOV and R. typhi were analysed by Enzyme-Linked Immunosorbent Assay and Immunofluorescence Assay respectively. Multivariable logistic regression analysis was used to evaluate the association between prevalence of infection in rodent reservoirs and risk factors. Most of the rodents were caught in public residential developments (62.2%). Among the tested rodents, 42.4% were infected with Leptospira spp., while 35.5% and 32.2% were seropositive for SEOV and R. typhi respectively, whereas Yersinia pestis was not detected. Furthermore, risk factors including habitat, species, gender, and weight of rodents, influenced prevalence of infection to a varying extent. This study highlights the presence of Leptospira spp., SEOV and R. typhi in Singapore's rodent population, suggesting the need for effective rodent management and sanitation strategies to prevent further circulation and transmission to humans.


Assuntos
Reservatórios de Doenças , Rickettsia typhi , Vírus Seoul , Zoonoses/epidemiologia , Animais , Humanos , Leptospira , Roedores , Estudos Soroepidemiológicos , Singapura/epidemiologia
2.
Virol J ; 7: 15, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20096099

RESUMO

BACKGROUND: Hantaviruses cause human disease in endemic regions around the world. Outbreaks of hantaviral diseases have been associated with changes in rodent population density and adaptation to human settlements leading to their proliferation in close proximity to human dwellings. In a parallel study initiated to determine the prevalence of pathogens in Singapore's wild rodent population, 1206 rodents were trapped and screened. The findings established a hantavirus seroprevalence of 34%. This paper describes the molecular characterization of hantaviruses from Rattus norvegicus and Rattus tanezumi, the predominant rodents caught in urban Singapore. METHODOLOGY: Pan-hanta RT-PCR performed on samples of Rattus norvegicus and Rattus tanezumi indicated that 27 (2.24%) of the animals were positive. sequence analysis of the S and M segments established that two different hantavirus strains circulate in the rodent population of Singapore. Notably, the hantavirus strains found in Rattus norvegicus clusters with other Asian Seoul virus sequences, while the virus strains found in Rattus tanezumi had the highest sequence similarity to the Serang virus from Rattus tanezumi in Indonesia, followed by Cambodian hantavirus isolates and the Thailand virus isolated from Bandicota indica. CONCLUSIONS: Sequence analysis of the S and M segments of hantavirus strains found in Rattus norvegicus (Seoul virus strain Singapore) and Rattus tanezumi (Serang virus strain Jurong TJK/06) revealed that two genetically different hantavirus strains were found in rodents of Singapore. Evidently, together with Serang, Cambodian and Thailand virus the Jurong virus forms a distinct phylogroup. Interestingly, these highly similar virus strains have been identified in different rodent hosts. Further studies are underway to analyze the public health significance of finding hantavirus strains in Singapore rodents.


Assuntos
Reservatórios de Doenças , Infecções por Hantavirus/veterinária , Orthohantavírus/genética , Orthohantavírus/isolamento & purificação , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia , Animais , Análise por Conglomerados , Genótipo , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Dados de Sequência Molecular , Filogenia , Prevalência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Singapura/epidemiologia
3.
Infect Genet Evol ; 8(3): 286-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18296126

RESUMO

Puumala hantavirus (PUUV), naturally harboured and shed by bank voles (Myodes [Clethrionomys] glareolus), is the etiological agent to nephropathia epidemica (NE), a mild haemorrhagic fever with renal syndrome. Both host and virus are found throughout much of the European continent and in northern Sweden NE is the second most prevalent serious febrile viral infection after influenza. The reliability of diagnostics by PCR depends on genetic variability for the detection of viral nucleic acids in unknown samples. In the present study we evaluated the genetic variability of PUUV isolated from bank voles in an area of northern Sweden highly endemic for NE. Genetic variability among bank voles was also investigated to evaluate co-evolutionary patterns. We found that the viral sequence appeared stable across the 80km study region, with the exception of the southernmost sampling site, which differed from its nearest neighbour by 7%, despite a geographical separation of only 10km. The southernmost sampling site demonstrated a higher degree of genetic similarity to PUUV previously isolated 100km south thereof; two locations appear to constitute a separate PUUV phylogenetic branch. In contrast to the viral genome, no phylogenetic variance was observed in the bank vole mtDNA in this study. Previous studies have shown that as a result of terrestrial mammals' postglacial re-colonization routes, bank voles and associated PUUV of a southern and a northern lineage established a dichotomous contact zone across the Scandinavian peninsula approximately 100-150km south of the present study sites. Our observations reveal evolutionary divergence of PUUV that has led to dissimilarities within the restricted geographical scale of the northern host re-colonization route as well. These results suggest either a static situation in which PUUV strains are regionally well adapted, or an ongoing process in which strains of PUUV circulate on a geographical scale not yet reliably described.


Assuntos
Variação Genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/virologia , Virus Puumala/genética , Doenças Endêmicas , Genoma Viral , Orthohantavírus/genética , Humanos , Filogenia , Homologia de Sequência do Ácido Nucleico , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...