Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 44(6): 552-564, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36540706

RESUMO

Engelhardia, a genus of Juglandaceae (the walnut family), is endemic to tropical and subtropical Asia. The rich Cenozoic fossil records and distinctive morphological characters of the living plants have been used to explore the evolutionary history and geographic distribution of Juglandaceae. However, the taxonomy of this genus has been suffered from a lack of in-depth investigation and good specimens across its distribution ranges. Species delimitation of Engelhardia was defined with seven species in 2020, but detailed information on the circumscription of the species still remains poorly understood. In this study, two new species are described from Sulawesi and Borneo, Engelhardia anminiana and E. borneensis. We also revised and reconstructed the phylogeny within Engelhardia using morphological, molecular (plastid and ribosomal), and distribution data. We sampled 787 individuals in 80 populations, and all the samples were genotyped using plastid regions, trnS-trnG, rps16, trnL-trnF, psbA-trnH, and rpl32-trnL; one ribosomal region, nuclear ribosomal internal transcribed spacer (nrITS). The all datasets were used to reconstruct the phylogenetic relationships. Then, the molecular analyses were combined for 738 sheets of specimens with 15 morphological characteristics to further explore the morphological clusters of Engelhardia. Cluster analysis using morphological data confirmed the delimitation of nine Engelhardia species. Also, phylogenetic analysis based on molecular data (i.e., plastid and ribosomal) supported the monophyly of Engelhardia and generated phylogenetic trees that included E. fenzelii, E. roxburghiana, E. borneensis, E. hainanensis, E. anminiana, E. serrata, E. villosa, E. apoensis and the varieties of E. spicata (i.e., E. spicata var. spicata, E. spicata var. rigida, E. spicata var. aceriflora, and E. spicata var. colebrookeana). Our comprehensive taxonomic revision of Engelhardia will provide an insight into understanding the plant diversity in tropical and subtropical Asia.

2.
Appl Plant Sci ; 9(8): e11444, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34504737

RESUMO

PREMISE: Within a broader study on leaf fossilization in freshwater environments, a long-term study on the development and microbiome composition of biofilms on the foliage of aquatic plants has been initiated to understand how microbes and biofilms contribute to leaf decay and preservation. Here, water lily leaves are employed as a study model to investigate the relationship between bacterial microbiomes, biodegradation, and fossilization. We compare four DNA extraction kits to reduce biases in interpretation and to identify the most suitable kit for the extraction of DNA from bacteria associated with biofilms on decaying water lily leaves for 16S rRNA amplicon analysis. METHODS: We extracted surface-associated DNA from Nymphaea leaves in early stages of decay at two water depth levels using four commercially available kits to identify the most suitable protocol for bacterial extraction, applying a mock microbial community standard to enable a reliable comparison of the kits. RESULTS: Kit 4, the FastDNA Spin Kit for Soil, resulted in high DNA concentrations with better quality and yielded the most accurate depiction of the mock community. Comparison of the leaves at two water depths showed no significant differences in community composition. DISCUSSION: The success of Kit 4 may be attributed to its use of bead beating with a homogenizer, which was more efficient in the lysis of Gram-positive bacteria than the manual vortexing protocols used by the other kits. Our results show that microbial composition on leaves during early decay remains comparable and may change only in later stages of decomposition.

3.
Mol Biol Rep ; 48(9): 6259-6267, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34392450

RESUMO

BACKGROUND: Crossostephium chinense is a traditional Chinese medicinal herb and it is often cultivated as an ornamental plant. Previous studies on this species mainly focused on its chemical composition and it was rarely represented in genetic studies, and thus genomic resources remain scarce. METHODS AND RESULTS: Both chloroplast and nuclear polymorphic microsatellites of C. chinense were screened from genome skimming data of two individuals. 64 and 63 cpSSR markers were identified from two chloroplast genomes of C. chinense. A total of 133 polymorphic nSSRs were developed. Ten nSSRs were randomly selected to test their transferability across 35 individuals from three populations of C. chinense, and 20 individuals each of Artemisia stolonifera and A. argyi. Cross-amplifications were successfully done for C. chinense and were partially amplified for both Artemisia species. The number of alleles varied from two to nine. The observed heterozygosity and expected heterozygosity per locus ranged from 0.000 to 0.286 and from 0.029 to 0.755, respectively. CONCLUSIONS: In this study, we developed polymorphic cpSSRs and nSSRs markers for C. chinense based on genome skimming sequencing. These genomic resources will be valuable for population genetics and conservation studies in C. chinense and Artemisia.


Assuntos
Artemisia/genética , Núcleo Celular/genética , Cloroplastos/genética , Genoma de Cloroplastos , Repetições de Microssatélites/genética , Polimorfismo Genético , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Medicamentos de Ervas Chinesas , Genoma de Planta , Heterozigoto , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...