Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Phytopathol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724018

RESUMO

Plant disease epidemics often transcend land management boundaries, creating a collective-action problem where a group must cooperate in a common effort to maximize individual and group benefits. Drawing upon the social-ecological systems framework and associated design principles, we review variables of resource systems, resource units, actors, and governance systems relevant to collective action in plant health. We identify a need to better characterize how attributes of epidemics determine the usefulness of collective management, what influences actors' decisions to participate, what governance systems fit different plant health threats, and how these subsystems interact to lead to plant health outcomes. We emphasize that there is not a single governance structure that ensures collective action but rather a continuum of structures that depend on the key system variables identified. An integrated social-ecological systems approach to collective action in plant health should enable institutional designs to better fit specific plant health challenges.

2.
Plant Dis ; 107(10): 3096-3105, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079020

RESUMO

Information on the presence and severity of grape powdery mildew (GPM), caused by Erysiphe necator, has long been used to guide management decisions. While recent advances in the available molecular diagnostic assays and particle samplers have made monitoring easier, there is still a need for more efficient field collection of E. necator. The use of vineyard worker gloves worn during canopy manipulation as a sampler (glove swab) of E. necator was compared with samples identified by visual assessment with subsequent molecular confirmation (leaf swabs) and airborne spore samples collected by rotating-arm impaction traps (impaction traps). Samples from United States commercial vineyards in Oregon, Washington, and California were analyzed using two TaqMan qPCR assays targeting the internal transcribed spacer regions or cytochrome b gene of E. necator. Based on qPCR assays, visual disease assessments misidentified GPM up to 59% of the time with a higher frequency of misidentification occurring earlier in the growing season. Comparison of the aggregated leaf swab results for a row (n = 915) to the row's corresponding glove swab had 60% agreement. The latent class analysis (LCA) indicated that glove swabs were more sensitive than leaf swabs in detecting E. necator presence. The impaction trap results had 77% agreement to glove swabs (n = 206) taken from the same blocks. The LCAs estimated that the glove swabs and impaction trap samplers varied each year in which was more sensitive for detection. This likely indicates that these methods have similar levels of uncertainty and provide equivalent information. Additionally, all samplers, once E. necator was detected, were similarly sensitive and specific for detection of the A-143 resistance allele. Together, these results suggest that glove swabs are an effective sampling method for monitoring the presence of E. necator and, subsequently, the G143A amino acid substitution associated with resistance to quinone outside inhibitor fungicides in vineyards. Glove swabs could reduce sampling costs due to the lack of need for specialized equipment and time required for swab collection and processing.


Assuntos
Ascomicetos , Vitis , Ascomicetos/genética , Fazendas , Estações do Ano
3.
Plant Dis ; 106(9): 2310-2320, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35100029

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are fungicides used in control of numerous fungal plant pathogens, including Erysiphe necator, the causal agent of grapevine powdery mildew (GPM). Here, the sdhb, sdhc, and sdhd genes of E. necator were screened for mutations that may be associated with SDHI resistance. GPM samples were collected from 2017 to 2020 from the U.S. states of California, Oregon, Washington, and Michigan, and the Canadian province of British Columbia. Forty-five polymorphisms were identified in the three sdh genes, 17 of which caused missense mutations. Of these, the SDHC-p.I244V substitution was shown in this study to reduce sensitivity of E. necator to boscalid and fluopyram, whereas the SDHC-p.G25R substitution did not affect SDHI sensitivity. Of the other 15 missense mutations, the SDHC-p.H242R substitution was shown in previous studies to reduce sensitivity of E. necator toward boscalid, whereas the equivalents of the SDHB-p.H242L, SDHC-p.A83V, and SDHD-p.I71F substitutions were shown to reduce sensitivity to SDHIs in other fungi. Generally, only a single amino acid substitution was present in the SDHB, SDHC, or SDHD subunit of E. necator isolates, but missense mutations putatively associated with SDHI resistance were widely distributed in the sampled areas and increased in frequency over time. Finally, isolates that had decreased sensitivity to boscalid or fluopyram were identified but with no or only the SDHC-p.G25R amino acid substitution present in SDHB, SDHC, and SDHD subunits. This suggests that target site mutations probably are not the only mechanism conferring resistance to SDHIs in E. necator.


Assuntos
Inibidores Enzimáticos/farmacologia , Succinato Desidrogenase , Vitis , Colúmbia Britânica , Farmacorresistência Fúngica/genética , Erysiphe , Mutação , Doenças das Plantas/microbiologia , Succinato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...