Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 31(Pt 1): 242-6, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12546694

RESUMO

Eukaryotic cells have evolved surveillance mechanisms, known as DNA-damage checkpoints, that sense and respond to genome damage. DNA-damage checkpoint pathways ensure co-ordinated cellular responses to DNA damage, including cell cycle delays and activation of repair mechanisms. RAD9, from Saccharomyces cerevisiae, was the first damage checkpoint gene to be identified, although its biochemical function remained unknown until recently. This review examines briefly work that provides significant insight into how Rad9 activates the checkpoint signalling kinase Rad53.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Quinase do Ponto de Checagem 2 , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
2.
Genome Biol ; 2(11): REPORTS4028, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11737942

RESUMO

A report on the 674th meeting of the Biochemical Society, Dublin, Ireland, 11-12 July 2001.


Assuntos
Apoptose/genética , Dano ao DNA/fisiologia , Transdução de Sinais/fisiologia , Animais , Ciclo Celular/fisiologia , Células Cultivadas , Reparo do DNA/fisiologia , Humanos
3.
Mol Cell Biol ; 21(21): 7150-62, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585898

RESUMO

Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alquilantes/farmacologia , Northern Blotting , Western Blotting , Ciclo Celular , Quinase do Ponto de Checagem 2 , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fase G2 , Deleção de Genes , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Mitose , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Saccharomyces cerevisiae/enzimologia , Fatores de Tempo , Raios Ultravioleta
4.
Nat Cell Biol ; 3(9): 844-7, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11533665

RESUMO

Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases , Exodesoxirribonucleases , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Fase G2 , Raios gama , Humanos , Proteína Homóloga a MRE11 , Fosforilação
5.
Mol Cell ; 8(1): 129-36, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11511366

RESUMO

We find budding yeast Rad9 in two distinct, large, and soluble complexes in cell extracts. The larger (> or =850 kDa) complex, found in nondamaged cells, contains hypophosphorylated Rad9, whereas the smaller (560 kDa) complex, which forms after DNA damage, contains hyperphosphorylated Rad9 and Rad53. This smaller Rad9 complex is capable of catalyzing phosphorylation and release of active Rad53 kinase, a process requiring the kinase activity of Rad53. However, Mec1 and Tel1 are no longer required once the 560 kDa complex has been formed. We propose a model whereby Mec1/Tel1-dependent hyperphosphorylation of Rad9 results in formation of the smaller Rad9 complex and recruitment of Rad53. This complex then catalyzes activation of Rad53 by acting as a scaffold that brings Rad53 molecules into close proximity, facilitating Rad53 in trans autophosphorylation and subsequent release of activated Rad53.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Reparo do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Mutat Res ; 485(3): 229-36, 2001 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-11267834

RESUMO

In this study, the effect of a prior UV irradiation on the removal of cyclobutane pyrimidine dimers (CPDs) from the transcribed strand (TS) and non-transcribed strand (NTS) of the MFA2 gene in haploid Saccharomyces cerevisiae (S. cerevisiae) cells was investigated. In NER competent cells, the pre-irradiation with a dose of 20J/m2 enhances the removal of CPDs induced by a second UV dose of 100J/m2 in the TS and the NTS of MFA2 gene except for the CPDs in the region +258 to +298 in the NTS, where the enhanced repair was absent. No inducible repair was observed in rad9, rad24, rad16 and rad26 cells, indicating two checkpoint genes RAD9 and RAD24, the global repair gene RAD16 and the transcription coupled repair gene RAD26 are essential for inducible NER.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Genes Fúngicos/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Raios Ultravioleta/efeitos adversos
7.
FEBS Lett ; 467(2-3): 311-5, 2000 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-10675560

RESUMO

In this work we report that the Saccharomyces cerevisiae RAD9, RAD24, RAD17, MEC1, MEC3 and RAD53 checkpoint genes are required for efficient non-homologous end joining (NHEJ). RAD9 and RAD24 function additionally in this process. Defective NHEJ in rad9Delta-rad24Delta, but not yku80Delta cells, is only partially rescued by imposing G1 or G2/M delays. Thus, checkpoint functions other than transient cell cycle delays may be required for normal levels of NHEJ. Epistasis analysis also indicated that YKU80 and RAD9/RAD24 function in the same pathway for repair of lesions caused by MMS and gamma-irradiation. Unlike NHEJ, the checkpoint pathway is not required for efficient site-specific integration of plasmid DNA into the yeast genome, which is RAD52-dependent, but RAD51-independent.


Assuntos
Reparo do DNA , Genes Fúngicos , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/genética , Fase G1 , Fase G2 , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Plasmídeos , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae
8.
Curr Opin Genet Dev ; 10(1): 17-25, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10679395

RESUMO

DNA damage or stalled DNA replication can activate specific signal transduction pathways, termed checkpoints. Checkpoint activation can result in increased repair, induction of a transcriptional programme and inhibition of cell-cycle progression. Recent results have suggested possible mechanisms for the detection of specific DNA structures, provided further information on the organisation of the signal transduction cascade and demonstrated involvement of the checkpoint pathway in DNA repair.


Assuntos
Dano ao DNA , Genes cdc , Transdução de Sinais , Animais , Apoptose , Ciclo Celular , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA , Humanos , Leveduras
9.
Curr Biol ; 10(1): 39-42, 2000 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-10660302

RESUMO

Rad24 functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. Here, analysis of Rad24 in whole cell extracts demonstrated that its mass was considerably greater than its predicted molecular weight, suggesting that Rad24 is a component of a protein complex. The Rad24 complex was purified to homogeneity. In addition to Rad24, the complex included polypeptides of 40 kDa and 35 kDa. The 40 kDa species was found by mass spectrometry to contain Rfc2 and Rfc3, subunits of replication factor C (RFC), a five subunit protein that is required for the loading of polymerases onto DNA during replication and repair [3]. We hypothesised that other RFC subunits, all of which share sequence homologles with Rad24, might also be components of the Rad24 complex. Reciprocal co-immunoprecipitation studies were performed using extracts prepared from strains containing epitope-tagged RFC proteins. These experiments showed that the small RFC proteins, Rfc2, Rfc3, Rfc4 and Rfc5, interacted with Rad24, whereas the Rfc1 subunit did not. We suggest that this RFC-like Rad24 complex may function as a structure-specific sensor in the DNA damage checkpoint pathway.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas de Homeodomínio , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/isolamento & purificação , Dano ao DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Antígenos de Histocompatibilidade Menor , Peso Molecular , Proteína de Replicação C , Saccharomyces cerevisiae/genética
11.
Nature ; 408(6815): 1001-4, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11140636

RESUMO

Histone proteins associate with and compact eukaryotic nuclear DNA to form chromatin. The basic unit of chromatin is the nucleosome, which is made up of 146 base pairs of DNA wrapped around two of each of four core histones, H2A, H2B, H3 and H4. Chromatin structure and its regulation are important in transcription and DNA replication. We therefore thought that DNA-damage signalling and repair components might also modulate chromatin structure. Here we have characterized a conserved motif in the carboxy terminus of the core histone H2A from Saccharomyces cerevisiae that contains a consensus phosphorylation site for phosphatidylinositol-3-OH kinase related kinases (PIKKs). This motif is important for survival in the presence of agents that generate DNA double-strand breaks, and the phosphorylation of this motif in response to DNA damage is dependent on the PIKK family member Mec1. The motif is not necessary for Mec1-dependent cell-cycle or transcriptional responses to DNA damage, but is required for efficient DNA double-strand break repair by non-homologous end joining. In addition, the motif has a role in determining higher order chromatin structure. Thus, phosphorylation of a core histone in response to DNA damage may cause an alteration of chromatin structure that facilitates DNA repair.


Assuntos
Reparo do DNA , Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cromatina/química , Cromatina/metabolismo , DNA Fúngico/fisiologia , Proteínas Fúngicas/metabolismo , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Mutagênese , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/fisiologia
12.
Curr Biol ; 9(10): 551-4, 1999 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-10339432

RESUMO

The Saccharomyces cerevisiae checkpoint protein Rad9 is required for transient cell-cycle arrest and transcriptional induction of DNA-repair genes in response to DNA damage [1]. It contains a carboxyterminal tandem repeat of the BRCT (BRCA1 carboxyl terminus) motif, a motif that is also found in many proteins involved in various aspects of DNA repair, recombination and checkpoint control [2][3]. We produced yeast strains expressing Rad9 in which the BRCT domain had been deleted or which harboured point mutations in the highly conserved aromatic residue of each BRCT motif. Rates of survival and checkpoint delay of the mutants after ultraviolet (UV) irradiation were essentially equivalent to those of rad9Delta (null) cells, demonstrating that the BRCT domain is required for Rad9 function. Rad9 hyperphosphorylation, which occurs after DNA damage [4][5][6], was absent in the BRCT mutants, as was Rad9-dependent phosphorylation of the Rad53 protein. A two-hybrid approach identified a specific interaction between the Rad9 BRCT domain and itself. Biochemical analysis in vitro and in vivo confirmed this interaction and, furthermore, demonstrated that the Rad9 BRCT domain preferentially interacted with the hyperphosphorylated forms of Rad9. This interaction was suppressed by mutations of the BRCT motifs that caused null phenotypes in vivo, suggesting that Rad9 oligomerization is required for Rad9 function after DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Glutationa Transferase/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
13.
EMBO J ; 17(19): 5679-88, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9755168

RESUMO

The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Quinase do Ponto de Checagem 2 , Fase G2/genética , Raios gama , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Metanossulfonato de Metila/farmacologia , Mitose/genética , Mutagênicos/farmacologia , Mutação , Nocodazol/farmacologia , Fosforilação , Ligação Proteica , Fase S/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta
14.
Genes Dev ; 12(16): 2560-73, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9716408

RESUMO

Preventing or delaying progress through the cell cycle in response to DNA damage is crucial for eukaryotic cells to allow the damage to be repaired and not incorporated irrevocably into daughter cells. Several genes involved in this process have been discovered in fission and budding yeast. Here, we report the identification of human and mouse homologs of the Schizosaccharomyces pombe DNA damage checkpoint control gene rad1(+) and its Saccharomyces cerevisiae homolog RAD17. The human gene HRAD1 is located on chromosome 5p13 and is most homologous to S. pombe rad1(+). This gene encodes a 382-amino-acid residue protein that is localized mainly in the nucleus and is expressed at high levels in proliferative tissues. This human gene significantly complements the sensitivity to UV light of a S. pombe strain mutated in rad1(+). Moreover, HRAD1 complements the checkpoint control defect of this strain after UV exposure. In addition to functioning in DNA repair checkpoints, S. cerevisiae RAD17 plays a role during meiosis to prevent progress through prophase I when recombination is interrupted. Consistent with a similar role in mammals, Rad1 protein is abundant in testis, and is associated with both synapsed and unsynapsed chromosomes during meiotic prophase I of spermatogenesis, with a staining pattern distinct from that of the recombination proteins Rad51 and Dmc1. Together, these data imply an important role for hRad1 both in the mitotic DNA damage checkpoint and in meiotic checkpoint mechanisms, and suggest that these events are highly conserved from yeast to humans.


Assuntos
Proteínas de Ligação a DNA , Exonucleases/fisiologia , Meiose/fisiologia , Sequência de Aminoácidos , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA , Endonucleases/química , Proteínas Fúngicas/química , Expressão Gênica , Teste de Complementação Genética , Células HeLa , Humanos , Masculino , Meiose/genética , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares , Prófase , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Homologia de Sequência de Aminoácidos , Espermatogênese/genética , Espermatogênese/fisiologia , Testículo/citologia , Testículo/fisiologia , Regulação para Cima
15.
EMBO J ; 17(9): 2687-98, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9564050

RESUMO

In budding yeast, RAD9 and RAD24/RAD17/MEC3 are believed to function upstream of MEC1 and RAD53 in signalling the presence of DNA damage. Deletion of any one of these genes reduces the normal G1/S and G2/M checkpoint delays after UV irradiation, whereas in rad9Delta-rad24Delta cells the G1/S checkpoint is undetectable, although there is a residual G2/M checkpoint. We have shown previously that RAD9 also controls the transcriptional induction of a DNA damage regulon (DDR). We now report that efficient DDR induction requires all the above-mentioned checkpoint genes. Residual induction of the DDR after UV irradiation observed in all single mutants is not detectable in rad9Delta-rad24Delta. We have examined the G2/M checkpoint and UV sensitivity of single mutants after overexpression of the checkpoint proteins. This analysis indicates that RAD9 and the RAD24 epistasis group can be placed onto two separate, additive branches that converge on MEC1 and RAD53. Furthermore, MEC3 appears to function downstream of RAD24/RAD17. The transcriptional response to DNA damage revealed unexpected and specific antagonism between RAD9 and RAD24. Further support for genetic interaction between RAD9 and RAD24 comes from study of the modification and activation of Rad53 after damage. Evidence for bypass of RAD53 function under some conditions is also presented.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Raios Ultravioleta , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , DNA Fúngico/biossíntese , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/efeitos da radiação , Proteínas de Ligação a DNA , Exodesoxirribonucleases/metabolismo , Fase G1 , Fase G2 , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fator de Acasalamento , Mitose , Nocodazol/farmacologia , Proteínas Nucleares , Peptídeos/farmacologia , Fosforilação , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
16.
EMBO J ; 15(15): 3912-22, 1996 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-8670896

RESUMO

Cells respond to DNA damage by arresting cell cycle progression and activating several DNA repair mechanisms. These responses allow damaged DNA to be repaired efficiently, thus ensuring the maintenance of genetic integrity. In the budding yeast, Saccharomyces cerevisiae, DNA damage leads both to activation of checkpoints at the G1, S and G2 phases of the cell cycle and to a transcriptional response. The G1 and G2 checkpoints have been shown previously to be under the control of the RAD9 gene. We show here that RAD9 is also required for the transcriptional response to DNA damage. Northern blot analysis demonstrated that RAD9 controls the DNA damage-specific induction of a large 'regulon' of repair, replication and recombination genes. This induction is cell-cycle independent as it was observed in asynchronous cultures and cells blocked in G1 or G2/M. RAD9-dependent induction was also observed from isolated damage responsive promoter elements in a lacZ reporter-based plasmid assay. RAD9 cells deficient in the transcriptional response were more sensitive to DNA damage than wild-type cells, even after functional substitution of checkpoints, suggesting that this activation may have an important role in DNA repair. Our findings parallel observations with the Escherichia coli SOS system and suggest the existence of an analogous eukaryotic network coordinating the cellular responses to DNA damage.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Northern Blotting , Reparo do DNA , Replicação do DNA , DNA Fúngico , Proteínas de Ligação a DNA/metabolismo , Óperon Lac , Dados de Sequência Molecular , Rad51 Recombinase , Recombinação Genética , Regulon , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae , Raios Ultravioleta
17.
Bioessays ; 14(12): 823-30, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1365898

RESUMO

After yeast cells commit to the cell cycle in a process called START, genes required for DNA synthesis are expressed in late G1. Periodicity is mediated by a hexameric sequence, known as a MCB element, present in all DNA synthesis gene promoters. A complex that specifically binds MCBs has been identified. One polypeptide in the MCB complex is Swi6, a transcription factor that together with Swi4 also binds G1 cyclin promoters and participates in a positive feedback loop at START. The finding that Swi6 is directly involved in both START and DNA synthesis gene control suggest a model in which Swi6, activated through its participation in START, serves as the central transcription factor in coordinating late G1 gene expression. The mechanism may be conserved in all eukaryotic cells.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Genes Fúngicos , Saccharomyces cerevisiae/genética , Animais , Sequência de Bases , Ciclo Celular/genética , Replicação do DNA/genética , DNA Fúngico/genética , Retroalimentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Origem de Replicação , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Vertebrados/genética
18.
Nature ; 357(6378): 505-8, 1992 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-1608450

RESUMO

In budding yeast many genes are expressed under cell-cycle control in late G1. These include a large group of DNA synthesis genes, the HO gene involved in mating-type switching, CTS1 (chitinase) and also CLN1 and CLN2 (ref. 4) encoding G1 cyclins. Two factors, encoded by the SWI4 and SWI6 genes, are required for HO (ref. 5), CLN (refs 6, 7) and CTS1 (ref. 3) gene expression and, at least in the HO promoter, bind to CACGA4 upstream sequences (CCBs). This motif is not found upstream of the DNA synthesis genes, which instead have a hexamer element, ACGCGT1 (MCB), an MluI restriction site, that is recognized by a cell-cycle regulated transcription complex DSC1 (ref. 1). This MluI-activation system consisting of the MCBs and DSC1 is conserved in fission yeast where a DSC1-like complex controls the cdc22+ ribonucleotide reductase gene. The Schizosaccharomyces pombe cdc10+ gene encodes a component of DSC1 (ref. 10) and, significantly, this has homology with both the Swi4 and Swi6 proteins. Here we show that Swi6 is an essential component of DSC1 and that deletion of SWI6 impairs the cell-cycle regulation of the DNA synthesis genes, as well as CLN1 and CLN2. Thus Swi6 is the common factor in regulation of all the above genes and may therefore be responsible for the timing of their expression in late G1.


Assuntos
DNA Fúngico/biossíntese , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Bases , Ciclo Celular , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...