Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541534

RESUMO

The objective of this study was to review the scientific evidence currently available on 3D printable materials and 3D printing technologies used for the fabrication of permanent restorations, focusing on material properties that are clinically relevant. A literature search was performed on four databases (MEDLINE/PubMed, Scopus, Cochrane Library, Web of Science) for articles published from January 2013 until November 2023, using a combination of free words: (restorative dentistry OR prosthetic dentistry) AND (3D printing OR additive manufacturing OR rapid prototyping) AND materials. Two reviewers screened titles and/or abstracts of 2.468 unique studies. In total, 83 studies were selected for full-text reading, from which 36 were included in the review. The assessed variables were mechanical properties, reporting in most of the cases positive results, dimensional accuracy and fit, reporting conflicting results with a predominance of positive, aesthetic properties, with positive reports but scarcely addressed, and biological properties, almost unexplored in independent studies. Despite numerous studies with positive results in favor, papers with negative outcomes were also retrieved. Aesthetic and biological properties are conversely still mostly unexplored. There remains a lack of conclusive evidence for viable 3D printable restorative and prosthodontic materials for permanent restorations. Research should be strengthened by defining international standards for laboratory testing and, where pre-clinical data are promising, conducting clinical trials.

2.
Acta Biomater ; 134: 760-773, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329788

RESUMO

The rise of antimicrobial resistant bacteria coupled with a void in antibiotic development marks Antimicrobial Resistance as one of the biggest current threats to modern medicine. Antimicrobial metals are being developed and used as alternative anti-infectives, however, the existence of known resistance mechanisms and limited data regarding bacterial responses to long-term metal exposure are barriers to widespread implementation. In this study, a panel of reference and clinical strains of major nosocomial pathogens were subjected to serial dosage cycles of silver and ciprofloxacin. Populations exposed to silver initially showed no change in sensitivity, however, increasingly susceptibility was observed after the 25th cycle. A control experiment with ciprofloxacin revealed a selection for resistance over time, with silver treated bacteria showing faster adaptation. Morphological analysis revealed filamentation in Gram negative species suggesting membrane perturbation, while sequencing of isolated strains identified mutations in numerous genes. These included those encoding for efflux systems, chemosensory systems, stress responses, biofilm formation and respiratory chain processes, although no consistent locus was identified that correlated with silver sensitivity. These results suggest that de novo silver resistance is hard to select in a range of nosocomial pathogens, although silver exposure may detrimentally impact sensitivity to antibiotics in the long term. STATEMENT OF SIGNIFICANCE: The adaptability of microbial life continuously calls for the development of novel antibiotic molecules, however, the cost and risk associated with their discovery have led to a drying up in the pipeline, causing antimicrobial resistance (AMR) to be a major threat to healthcare. From all available strategies, antimicrobial metals and, more specifically, silver showcase large bactericidal spectrum and limited toxic effect which coupled with a large range of processes available for their delivery made these materials as a clear candidate to tackle AMR. Previous reports have shown the ability of this metal to enact a synergistic effect with other antimicrobial therapies, nevertheless, the discovery of Ag resistance mechanisms since the early 70s and limited knowledge on the long term influence of silver on AMR poses a threat to their applicability. The present study provides quantitative data on the influence of silver based therapies on AMR development for a panel of reference and clinical strains of major nosocomial pathogens, revealing that prolonged silver exposure may detrimentally impact sensitivity to antibiotics.


Assuntos
Ciprofloxacina , Infecção Hospitalar , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Prata/farmacologia
3.
Mater Sci Eng C Mater Biol Appl ; 126: 112158, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082963

RESUMO

The growing threat of bacterial resistance to antibiotics is driving an increasing need for new antimicrobial strategies. This work demonstrates the potential of magnesium oxychloride cements (MOC) to be used as inorganic antimicrobial biomaterials for bone augmentation. An injectable formulation was identified at a powder to liquid ratio of 1.4 g mL-1, with an initial setting time below 30 mins and compressive strength of 35 ± 9 MPa. Supplementation with Ag3PO4 to enhance the antimicrobial efficacy of MOC was explored, and shown via real time X-ray diffraction to retard the formation of hydrated oxychloride phases by up to 30%. The antimicrobial efficacy of MOC was demonstrated in vitro against Staphylococcus aureus and Pseudomonas aeruginosa, forming zones of inhibition and significantly reducing viability in broth culture. Enhanced efficacy was seen for silver doped formulations, with complete eradication of detectable viable colonies within 3 h, whilst retaining the cytocompatibility of MOC. Investigating the antimicrobial mode of action revealed that Mg and Ag release and elevated pH contributed to MOC efficacy. Sustained silver release was demonstrated over 14 days, suggesting the Ag3PO4 modified formulation offers two mechanisms of infection treatment, combining the inherent antimicrobial properties of MOC with controlled release of inorganic antimicrobials.


Assuntos
Anti-Infecciosos , Magnésio , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cimentos Ósseos , Suplementos Nutricionais , Magnésio/farmacologia , Teste de Materiais , Fosfatos , Compostos de Prata
4.
Biomater Sci ; 8(18): 4951-4974, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32820747

RESUMO

The global surge of antimicrobial resistance (AMR) is a major concern for public health and proving to be a key challenge in modern disease treatment, requiring action plans at all levels. Microorganisms regularly and rapidly acquire resistance to antibiotic treatments and new drugs are continuously required. However, the inherent cost and risk to develop such molecules has resulted in a drying of the pipeline with very few compounds currently in development. Over the last two decades, efforts have been made to tackle the main sources of AMR. Nevertheless, these require the involvement of large governmental bodies, further increasing the complexity of the problem. As a group with a long innovation history, the biomaterials community is perfectly situated to push forward novel antimicrobial technologies to combat AMR. Although this involvement has been felt, it is necessary to ensure that the field offers a united front with special focus in areas that will facilitate the development and implementation of such systems. This paper reviews state of the art biomaterials strategies striving to limit AMR. Promising broad-spectrum antimicrobials and device modifications are showcased through two case studies for different applications, namely topical and implantables, demonstrating the potential for a highly efficacious physical and chemical approach. Finally, a critical review on barriers and limitations of these methods has been developed to provide a list of short and long-term focus areas in order to ensure the full potential of the biomaterials community is directed to helping tackle the AMR pandemic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Farmacorresistência Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA