Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(33): 37732-37740, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32692925

RESUMO

Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl3) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature. The increase of the film's porosity is attributed to formation of a greater amount of HCl (originated from both the oxidative coupling and chlorination reactions) and the release of gaseous FeCl3 byproducts, i.e., Cl2, at higher deposition temperatures. In addition, high resolution mass spectrometry reveals that increase of the reaction temperature promotes a higher degree of conjugation of the fused porphyrins chains, which ensures that high electronic conductivities are maintained along with high porosity. The method reported herein could enable the engineering of fused porphyrin thin films in sensing and catalytic devices.

2.
ACS Appl Mater Interfaces ; 11(1): 1335-1343, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525382

RESUMO

The growth of thermoresponsive layers with the atmospheric pressure plasma-initiated chemical vapor deposition (AP-PiCVD) process is reported for the first time. N-vinyl caprolactam (NVCL) was successfully homopolymerized and copolymerized with ethylene glycol dimethacrylate (EGDMA), yielding water-soluble and water-stable thermoresponsive thin films, respectively. Strong chemical retention and high thermoresponsivity were achieved, highlighting the ability of AP-PiCVD to grow functional conventional homopolymers and copolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...