Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(8): 6017-6029, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681639

RESUMO

The series BaIn1-x Fe x O2.5+δ, x = 0.25, 0.50, and 0.75, has been prepared under air-fired and argon-fired conditions and studied using X-ray diffraction, d.c. and a.c. susceptibility, Mössbauer spectroscopy, neutron diffraction, X-ray near edge absorption spectroscopy (XANES), and X-ray pair distribution (PDF) methods. While Ba2In2O5 (BaInO2.5) crystallizes in an ordered brownmillerite structure, Ibm2, and Ba2Fe2O5 (BaFeO2.5) crystallizes in a complex monoclinic structure, P21/c, showing seven Fe3+ sites with tetrahedral, square planar, and octahedral environments, all phases studied here crystallize in the cubic perovskite structure, Pm3̅m, with long-range disorder on the small cation and oxygen sites. 57Fe Mössbauer studies indicate a mixed valency, Fe4+/Fe3+, for both the air-fired and argon-fired samples. The increased Fe3+ content for the argon-fired samples is reflected in increased cubic cell constants and in the increased Mössbauer fraction. It appears that the Pm3̅m phases are only metastable when fired in argon. From a slightly modified percolation theory for a primitive cubic lattice (taking into account the presence of random O atom vacancies), long-range spin order is permitted for the x = 0.50 and 0.75 phases. Instead, the d.c. susceptibility shows only zero-field-cooled (ZFC) and field-cooled (FC) divergences at ∼6 K [5 K] for x = 0.50 and at ∼22 K [21 K] for x = 0.75, with values for the argon-fired samples in [ ]. Neutron diffraction data for the air-fired samples confirm the absence of long-range magnetic order at any studied temperature. For the air-fired x = 0.50, a.c. susceptibility data show a frequency-dependent χ'(max) and spin glass behavior, while for x = 0.75, χ'(max) is invariant with frequency, ruling out either a spin glass or a superparamagnetic ground state. These behaviors are discussed in terms of competing Fe3+-Fe3+ antiferromagnetic exchange and ferromagnetic Fe3+-Fe4+ exchange. The PDF and 57Fe Mössbauer data indicate a local structure at short interatomic distances, which deviates strongly from the average Pm3̅m model. Fe Mössbauer, PDF, and XANES data show a systematic dependence on x and indicate that the Fe3+ sites are largely fourfold-coordinated and Fe4+ sites are fivefold- or sixfold-coordinated.

2.
J Chem Phys ; 148(4): 044201, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390818

RESUMO

Pressure-induced energy blue- and red-shifts of the 4F3/2 → 4I9/2,11/2 near-infrared emission lines of Nd3+ ions in YAlO3 perovskite nano-particles have been measured from ambient conditions up to 29 GPa. Different positive and negative linear pressure coefficients have been calibrated for the emission lines and related to pressure-induced changes in the interactions between those Nd3+ ions and their twelve oxygen ligands at the yttrium site. Potentiality of the simple overlap model, combined with ab initio structural calculations, in the description of the effects of these interactions on the energy levels and luminescence properties of the optically active Nd3+ ion is emphasized. Simulations show how the energies of the 4f3 ground configuration and the barycenters of the multiplets increase with pressure, whereas the Coulomb interaction between f-electrons decreases and the crystal-field strength increases. All these effects combined explain the wavelength blue-shifts of some near-infrared emission lines of Nd3+ ions. Large pressure rates of various emission lines suggest that a YAlO3 perovskite nano-crystal can be a potential candidate for near-infrared optical pressure sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...