Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138078

RESUMO

Mycobacterium tuberculosis is the main causal agent of pulmonary tuberculosis (TB); the treatment of this disease is long and involves a mix of at least four different antibiotics that frequently lead to abandonment, favoring the surge of drug-resistant mycobacteria (MDR-TB), whose treatment becomes more aggressive, being longer and more toxic. Thus, the search for novel strategies for treatment that improves time or efficiency is of relevance. In this work, we used a murine model of pulmonary TB produced by the MDR-TB strain to test the efficiency of gene therapy with adenoviral vectors codifying TNF (AdTNF), a pro-inflammatory cytokine that has protective functions in TB by inducing apoptosis, granuloma formation and expression of other Th1-like cytokines. When compared to the control group that received an adenoviral vector that codifies for the green fluorescent protein (AdGFP), a single dose of AdTNF at the chronic active stage of the disease produced total survival, decreasing bacterial load and tissue damage (pneumonia), which correlated with an increase in cells expressing IFN-γ, iNOS and TNF in pneumonic areas and larger granulomas that efficiently contain and eliminate mycobacteria. Second-line antibiotic treatment against MDR-TB plus AdTNF gene therapy reduced bacterial load faster within a week of treatment compared to empty vector plus antibiotics or antibiotics alone, suggesting that AdTNF is a new potential type of treatment against MDR-TB that can shorten second-line chemotherapy but which requires further experimentation in other animal models (non-human primates) that develop a more similar disease to human pulmonary TB.

2.
Front Cell Infect Microbiol ; 13: 1105872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284503

RESUMO

Tuberculosis (TB) caused by the complex Mycobacterium tuberculosis (Mtb) is the main cause of death by a single bacterial agent. Last year, TB was the second leading infectious killer after SARS-CoV-2. Nevertheless, many biological and immunological aspects of TB are not completely elucidated, such as the complex process of immunoregulation mediated by regulatory T cells (Treg cells) and the enzymes indoleamine 2,3-dioxygenase (IDO) and heme oxygenase 1 (HO-1). In this study, the contribution of these immunoregulatory factors was compared in mice infected with Mtb strains with different levels of virulence. First Balb/c mice were infected by intratracheal route, with a high dose of mild virulence reference strain H37Rv or with a highly virulent clinical isolate (strain 5186). In the lungs of infected mice, the kinetics of Treg cells during the infection were determined by cytofluorometry and the expression of IDO and HO-1 by RT-PCR and immunohistochemistry. Then, the contribution of immune-regulation mediated by Treg cells, IDO and HO-1, was evaluated by treating infected animals with specific cytotoxic monoclonal antibodies for Treg cells depletion anti-CD25 (PC61 clone) or by blocking IDO and HO-1 activity using specific inhibitors (1-methyl-D,L-tryptophan or zinc protoporphyrin-IX, respectively). Mice infected with the mild virulent strain showed a progressive increment of Treg cells, showing this highest number at the beginning of the late phase of the infection (28 days), the same trend was observed in the expression of both enzymes being macrophages the cells that showed the highest immunostaining. Animals infected with the highly virulent strain showed lower survival (34 days) and higher amounts of Treg cells, as well as higher expression of IDO and HO-1 one week before. In comparison with non-treated animals, mice infected with strain H37Rv with depletion of Treg cells or treated with the enzymes blockers during late infection showed a significant decrease of bacilli loads, higher expression of IFN-g and lower IL-4 but with a similar extension of inflammatory lung consolidation determined by automated morphometry. In contrast, the depletion of Treg cells in infected mice with the highly virulent strain 5186 produced diffuse alveolar damage that was similar to severe acute viral pneumonia, lesser survival and increase of bacillary loads, while blocking of both IDO and HO-1 produced high bacillary loads and extensive pneumonia with necrosis. Thus, it seems that Treg cells, IDO and HO-1 activities are detrimental during late pulmonary TB induced by mild virulence Mtb, probably because these factors decrease immune protection mediated by the Th1 response. In contrast, Treg cells, IDO and HO-1 are beneficial when the infection is produced by a highly virulent strain, by regulation of excessive inflammation that produced alveolar damage, pulmonary necrosis, acute respiratory insufficiency, and rapid death.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Pulmonar , Camundongos , Animais , Heme Oxigenase-1 , Mycobacterium tuberculosis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores , Virulência , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Pulmão/microbiologia , Necrose/metabolismo
3.
Microorganisms ; 11(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375056

RESUMO

Tuberculosis (TB) is the deadliest disease caused by a bacterial agent. Glucocorticoids (GCs) have a typical anti-inflammatory effect, but recently it has been shown that they can present proinflammatory activity, mainly by increasing molecules from innate immunity. In the current study, we evaluated the effect of low doses of dexamethasone on Mycobacterium tuberculosis in vivo and in vitro. We used an established mice model of progressing tuberculosis (TB) in the in vivo studies. Intratracheal or intranasal dexamethasone therapy administered with conventional antibiotics in the late stage of the disease decreased the lung bacilli load and lung pneumonia, and increased the survival of the animals. Finally, the treatment decreased the inflammatory response in the SNC and, therefore, sickness behavior and neurological abnormalities in the infected animals. In the in vitro experiments, we used a cell line of murine alveolar macrophages infected with Mtb. Low-dose dexamethasone treatment increased the clearance capacity of Mtb by MHS macrophages, MIP-1α, and TLR2 expression, decreased proinflammatory and anti-inflammatory cytokines, and induced apoptosis, a molecular process that contributes to the control of the mycobacteria. In conclusion, the administration of low doses of dexamethasone represents a promising adjuvant treatment for pulmonary TB.

4.
Hum Gene Ther ; 33(19-20): 1037-1051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35615876

RESUMO

Tuberculosis (TB) has been for many years a major public health problem since treatment is long and sometimes ineffective favoring the increase of multidrug-resistant mycobacteria (MDR-TB). Gene therapy is a novel and effective tool to regulate immune responses. In this study we evaluated the therapeutic effect of an adenoviral vector codifying osteopontin (AdOPN), a molecule known for their roles to favor Th1 and Th17 type-cytokine expression which are crucial in TB containment. A single dose of AdOPN administration in BALB/c mice suffering late progressive pulmonary MDR-TB produced significant lower bacterial load and pneumonia, due to higher expression of IFN-γ, IL-12, and IL-17 in coexistence with increase of granulomas in number and size, resulting in higher survival, in contrast with mice treated with the control adenovirus that codify the green fluorescent protein (AdGFP). Combined therapy of AdOPN with a regimen of second line antibiotics produced a better control of bacterial load in lung during the first days of treatment, suggesting that AdOPN can shorten chemotherapy. Taken together, gene therapy with AdOPN leads to higher immune responses against TB infection, resulting in a new potential treatment against pulmonary TB that can co-adjuvant chemotherapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Camundongos , Animais , Interleucina-17/genética , Mycobacterium tuberculosis/genética , Osteopontina/genética , Osteopontina/farmacologia , Osteopontina/uso terapêutico , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/terapia , Tuberculose Pulmonar/tratamento farmacológico , Camundongos Endogâmicos BALB C , Pulmão , Terapia Genética/métodos , Interleucina-12/genética , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Citocinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216083

RESUMO

Tuberculosis (TB) is one of the ten leading causes of death worldwide. Patients with TB have been observed to suffer from depression and anxiety linked to social variables. Previous experiments found that the substantial pulmonary inflammation associated with TB causes neuroinflammation, neuronal death, and behavioral impairments in the absence of brain infection. Curcumin (CUR) is a natural product with antioxidant, anti-inflammatory and antibacterial activities. In this work, we evaluated the CUR effect on the growth control of mycobacteria in the lungs and the anti-inflammatory effect in the brain using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive mycobacteria (strain H37Rv). The results have shown that CUR decreased lung bacilli load and pneumonia of infected animals. Finally, CUR significantly decreased neuroinflammation (expression of TNFα, IFNγ and IL12) and slightly increased the levels of nuclear factor erythroid 2-related to factor 2 (Nrf2) and the brain-derived neurotrophic factor (BDNF) levels, improving behavioral status. These results suggest that CUR has a bactericidal effect and can control pulmonary mycobacterial infection and reduce neuroinflammation. It seems that CUR has a promising potential as adjuvant therapy in TB treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antituberculosos/farmacologia , Encéfalo/microbiologia , Curcumina/farmacologia , Pulmão/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose/tratamento farmacológico , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/metabolismo , Tuberculose Pulmonar/metabolismo
7.
NPJ Vaccines ; 5(1): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194998

RESUMO

Comorbidity between Tuberculosis (TB) and type 2 diabetes (T2D) is one of the greatest contributors to the spread of Mycobacterium tuberculosis (M. tuberculosis) in low- and middle-income countries. T2D compromises key steps of immune responses against M. tuberculosis and it might affect the protection afforded by vaccine candidates against TB. We compared the protection and immune response afforded by the BCGΔBCG1419c vaccine candidate versus that of wild-type BCG in mice with T2D. Vaccination with both BCGΔBCG1419c, BCG or infection with M. tuberculosis reduced weight loss, hyperglycemia, and insulin resistance during T2D progression, suggesting that metabolic changes affecting these parameters were affected by mycobacteria. For control of acute TB, and compared with non-vaccinated controls, BCG showed a dominant T CD4+ response whereas BCGΔBCG1419c showed a dominant T CD8+/B lymphocyte response. Moreover, BCG maintained an increased response in lung cells via IFN-γ, TNF-α, and IL-4, while BCGΔBCG1419c increased IFN-γ but reduced IL-4 production. As for chronic TB, and compared with non-vaccinated controls, both BCG strains had a predominant presence of T CD4+ lymphocytes. In counterpart, BCGΔBCG1419c led to increased presence of dendritic cells and an increased production of IL-1 ß. Overall, while BCG effectively reduced pneumonia in acute infection, it failed to reduce it in chronic infection, whereas we hypothesize that increased production of IL-1 ß induced by BCGΔBCG1419c contributed to reduced pneumonia and alveolitis in chronic TB. Our results show that BCG and BCGΔBCG1419c protect T2D mice against TB via different participation of T and B lymphocytes, dendritic cells, and pro-inflammatory cytokines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...