Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109457, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558931

RESUMO

Helicobacter pylori (H. pylori) infection is a known cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the underlying mechanisms by which H. pylori infection triggers these disorders are still not clearly understood. Gastric cancer is a slow progressing disease, which makes it difficult to study. We have developed an accelerated disease progression mouse model, which leverages mice deficient in the myeloid differentiation primary response 88 gene (Myd88-/-) infected with Helicobacter felis (H. felis). Using this model and gastric biopsy samples from patients, we report that activation of the Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-ß (TRIF)-type I interferon (IFN-I) signaling pathway promotes Helicobacter-induced disease progression toward severe gastric pathology and gastric cancer development. Further, results implicated downstream targets of this pathway in disease pathogenesis. These findings may facilitate stratification of Helicobacter-infected patients and thus enable treatment prioritization of patients.

2.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37333238

RESUMO

Helicobacter pylori ( H. pylori) infection is an established cause of many digestive diseases, including gastritis, peptic ulcers, and gastric cancer. However, the mechanism by which infection with H. pylori causes these disorders is still not clearly understood. This is due to insufficient knowledge of pathways that promote H. pylori -induced disease progression. We have established a Helicobacter -induced accelerated disease progression mouse model, which involves infecting mice deficient in the myeloid differentiation primary response 88 gene ( Myd88 -/- ) with H. felis . Using this model, we report here that that progression of H. felis -induced inflammation to high-grade dysplasia was associated with activation of type I interferon (IFN-I) signaling pathway and upregulation of related downstream target genes, IFN-stimulated genes (ISGs). These observations were further corroborated by the enrichment of ISRE motifs in the promoters of upregulated genes. Further we showed that H. felis -induced inflammation in mice deficient in Toll/interleukin-1 receptor (TIR)-domain-containing adaptor inducing interferon-ß (TRIF, Trif Lps 2 ) did not progress to severe gastric pathology, indicating a role of the TRIF signaling pathway in disease pathogenesis and progression. Indeed, survival analysis in gastric biopsy samples from gastric cancer patients illustrated that high expression of Trif was significantly associated with poor survival in gastric cancer.

3.
Int J Oncol ; 58(3): 388-396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469673

RESUMO

Helicobacter pylori (H. pylori) infection is a major risk factor for the development of gastric cancer. The authors previously demonstrated that in mice deficient in myeloid differentiation primary response 88 (Myd88­/­), infection with Helicobacter felis (H. felis) a close relative of H. pylori, subsequently rapidly progressed to neoplasia. The present study examined circulating tumor cells (CTCs) by measuring the expression of cytokeratins, epithelial­to­mesenchymal transition (EMT)­related markers and cancer stem cell (CSC) markers in bone marrow and peripheral blood from Myd88­/­ and wild­type (WT) mice. Cytokeratins CK8/18 were detected as early as 4 months post­infection in Myd88­/­ mice. By contrast, cytokeratins were not detected in WT mice even after 7 months post­infection. The expression of Mucin­1 (MUC1) was observed in both bone marrow and peripheral blood at different time points, suggesting its role in gastric cancer metastasis. Snail, Twist and ZEB were expressed at different levels in bone marrow and peripheral blood. The expression of these EMT­related markers suggests the manifestation of cancer metastasis in the early stages of disease development. LGR5, CD44 and CD133 were the most prominent CSC markers detected. The detection of CSC and EMT markers along with cytokeratins does reinforce their use as biomarkers for gastric cancer metastasis. This early detection of markers suggests that CTCs leave primary site even before cancer is well established. Thus, cytokeratins, EMT, and CSCs could be used as biomarkers to detect aggressive forms of gastric cancers. This information may prove to be of significance in stratifying patients for treatment prior to the onset of severe disease­related characteristics.


Assuntos
Biomarcadores Tumorais/análise , Medula Óssea/patologia , Infecções por Helicobacter/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/diagnóstico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Helicobacter felis/patogenicidade , Humanos , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Gástricas/sangue , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
4.
Microorganisms ; 9(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477306

RESUMO

Gastric cancer is the third most common cause of death from cancer in the world and infection with Helicobacter pylori (H. pylori) is the main cause of gastric cancer. In addition to Helicobacter infection, the overall stomach microbiota has recently emerged as a potential factor in gastric cancer progression. Previously we had established that mice deficient in myeloid differentiation primary response gene 88 (MyD88, Myd88-/- ) rapidly progressed to neoplasia when infected with H. felis. Thus, in order to assess the role of the microbiota in this fast-progressing gastric cancer model we investigated changes of the gastric microbiome in mice with different genotypic backgrounds: wild type (WT), MyD88-deficient (Myd88-/- ), mice deficient in the Toll/interleukin-1 receptor (TIR) domain-containing adaptor-inducing interferon-ß (TRIF, Trif Lps2), and MyD88- and TRIF-deficient (Myd88-/- /Trif Lps2, double knockout (DKO)) mice. We compared changes in alpha diversity, beta diversity, relative abundance, and log-fold differential of relative abundance ratios in uninfected and Helicobacter infected mice and studied their correlations with disease progression to gastric cancer in situ. We observed an overall reduction in microbial diversity post-infection with H. felis across all genotypes. Campylobacterales were observed in all infected mice, with marked reduction in abundance at 3 and 6 months in Myd88-/- mice. A sharp increase in Lactobacillales in infected Myd88-/- and DKO mice at 3 and 6 months was observed as compared to Trif Lps2 and WT mice, hinting at a possible role of these bacteria in gastric cancer progression. This was further reinforced upon comparison of Lactobacillales log-fold differentials with histological data, indicating that Lactobacillales are closely associated with Helicobacter infection and gastric cancer progression. Our study suggests that differences in genotypes could influence the stomach microbiome and make it more susceptible to the development of gastric cancer upon Helicobacter infection. Additionally, increase in Lactobacillales could contribute to faster development of gastric cancer and might serve as a potential biomarker for the fast progressing form of gastric cancer.

5.
Sci Rep ; 9(1): 7030, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065023

RESUMO

Helicobacter pylori infection induces a number of pro-inflammatory signaling pathways contributing to gastric inflammation and carcinogenesis. Among those, NF-κB signaling plays a pivotal role during infection and malignant transformation of the gastric epithelium. However, deficiency of the adaptor molecule myeloid differentiation primary response 88 (MyD88), which signals through NF-κB, led to an accelerated development of gastric pathology upon H. felis infection, but the mechanisms leading to this phenotype remained elusive. Non-canonical NF-κB signaling was shown to aggravate H. pylori-induced gastric inflammation via activation of the lymphotoxin ß receptor (LTßR). In the present study, we explored whether the exacerbated pathology observed in MyD88-deficient (Myd88-/-) mice was associated with aberrant activation of non-canonical NF-κB. Our results indicate that, in the absence of MyD88, H. felis infection enhances the activation of non-canonical NF-κB that is associated with increase in Cxcl9 and Icam1 gene expression and CD3+ lymphocyte recruitment. In addition, activation of signal transducer and activator of transcription 3 (STAT3) signaling was higher in Myd88-/- compared to wild type (WT) mice, indicating a link between MyD88 deficiency and STAT3 activation in response to H. felis infection. Thereby, MyD88 deficiency results in accelerated and aggravated gastric pathology induced by Helicobacter through activation of non-canonical NF-κB.


Assuntos
Infecções por Helicobacter/patologia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter felis , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Gastropatias/metabolismo , Gastropatias/microbiologia , Gastropatias/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
6.
BMC Microbiol ; 17(1): 226, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202699

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that is recognized as a major cause of chronic gastritis, peptic ulcers, and gastric cancer. Comparable to other Gram-negative bacteria, lipopolysaccharides (LPS) are an important cellular component of the outer membrane of H. pylori. The LPS of this organism plays a key role in its colonization and persistence in the stomach. In addition, H. pylori LPS modulates pathogen-induced host inflammatory responses resulting in chronic inflammation within the gastrointestinal tract. Very little is known about the comparative LPS compositions of different strains of H. pylori with varied degree of virulence in human. Therefore, LPS was analyzed from two strains of H. pylori with differing potency in inducing inflammatory responses (SS1 and G27). LPS were extracted from aqueous and phenol layer of hot-phenol water extraction method and subjected for composition analysis by gas chromatography - mass spectrometry (GC-MS) to sugar and fatty acid compositions. RESULTS: The major difference between the two strains of H. pylori is the presence of Rhamnose, Fucose and GalNAc in the SS1 strain, which was either not found or with low abundance in the G27 strain. On the other hand, high amount of Mannose was present in G27 in comparison to SS1. Fatty acid composition of lipid-A portion also showed considerable amount of differences between the two strains, phenol layer of SS1 had enhanced amount of 3 hydroxy decanoic acid (3-OH-C10:0) and 3-hydroxy dodecanoic acid (3-OH-C12:0) which were not present in G27, whereas myristic acid (C14:0) was present in G27 in relatively high amount. CONCLUSION: The composition analysis of H. pylori LPS, revealed differences in sugars and fatty acids composition between a mouse adapted strain SS1 and G27. This knowledge provides a novel way to dissect out their importance in host-pathogen interaction in further studies.


Assuntos
Helicobacter pylori/química , Lipopolissacarídeos/química , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Helicobacter pylori/metabolismo , Monossacarídeos/química , Especificidade da Espécie
7.
BMC Cancer ; 17(1): 133, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201999

RESUMO

BACKGROUND: Gastric cancer is one of the most common and lethal type of cancer worldwide. Infection with Helicobacter pylori (H. pylori) is recognized as the major cause of gastric cancer. However, it remains unclear the mechanism by which Helicobacter infection leads to gastric cancer. Furthermore, the underlying molecular events involved during the progression of Helicobacter infection to gastric malignancy are not well understood. In previous studies, we demonstrated that that H. felis-infected Myd88 -/- mice exhibited dramatic pathology and an accelerated progression to gastric dysplasia; however, the MyD88 downstream gene targets responsible for this pathology have not been described. This study was designed to identify MyD88-dependent genes involved in the progression towards gastric cancer during the course of Helicobacter infection. METHODS: Wild type (WT) and Myd88 deficient mice (Myd88 -/-) were infected with H. felis for 25 and 47 weeks and global transcriptome analysis performed on gastric tissue using MouseWG-6 v2 expression BeadChips microarrays. Function and pathway enrichment analyses of statistically significant, differential expressed genes (p < 0.05) were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tools. RESULTS: Helicobacter infection affected the transcriptional profile of more genes in Myd88 -/- mice compared to WT mice. Infection of Myd88 -/- mice resulted in the differential expression of 1,989 genes at 25 weeks (1031 up and 958 downregulated). At 47 weeks post-H.felis infection, 2,162 (1140 up and 1022 downregulated) were differentially expressed. The most significant differentially upregulated gene during Helicobacter infection in Myd88 -/- mice was chitinase-like 4 (chil4), which is involved in tissue remodeling and wound healing. Other highly upregulated genes in H. felis-infected Myd88 -/- mice included, Indoleamine 2,3-Dioxygenase 1 (Ido1), Guanylate binding protein 2 (Gbp2), ubiquitin D (Ubd), ß 2 -Microglobulin (B2m), CD74 antigen (Cd74), which have been reported to promote cancer progression by enhancing angiogenesis, proliferation, migration, metastasis, invasion, and tumorigenecity. For downregulated genes, the highly expressed genes included, ATPase H+/K+ transporting, alpha subunit (Atp4a), Atp4b, Mucin 5 AC (Muc5ac), Apolipoprotein A-1 (Apoa1), and gastric intrinsic factor (Gif), whose optimal function is important in maintaining gastric hemostasis and lower expression has been associated with increased risk of gastric carcinogenesis. CONCLUSIONS: These results provide a global transcriptional gene profile during the development and progression of Helicobacter-induced gastric cancer. The data show that our mouse model system is useful for identifying genes involved in gastric cancer progression.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Infecções por Helicobacter/complicações , Fator 88 de Diferenciação Mieloide/fisiologia , Neoplasias Gástricas/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Helicobacter pylori , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...