Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet World ; 16(3): 601-606, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37041848

RESUMO

Background and Aim: Heat shock proteins are highly conserved proteins that work as molecular chaperones expressed in response to thermal stress. This study aimed to determine the expression profile of genes related to the heat stress response in whole blood obtained from the Romosinuano creole breed. Materials and Methods: Real-time polymerase chain reaction was performed to analyze the transcript of hsp90, hsp70, hsp60, and hsf1 in the whole blood of Romosinuano under different temperature-humidity indices (THIs). Results: The expression levels of the hsp70 and hsf1 genes at the high-THI level were higher (p = 0.0011 and p = 0.0003, respectively) than those at the low-THI level. In addition, no differences in the expression levels of the hsp60 and hsP90 genes were detected between the two THIs. Conclusion: The overexpression of hsf1 and hsp70 genes play an important role in protecting cells from damage induced by heat stress.

2.
Vet Med Int ; 2023: 1875253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910894

RESUMO

Salmonellosis is a common infectious disease in humans caused by Salmonella spp., which in recent years has shown an increase in its incidence, with products of avian origin being a common source of transmission. To present a successful infective cycle, there are molecular mechanisms such as virulence factors that provide characteristics that facilitate survival, colonization, and damage to the host. According to this, the study aims to characterize the virulence factors of Salmonella spp. strains isolated from broilers (n = 39) and humans (n = 10). The presence of 24 virulence genes was evaluated using end-point PCR. All the strains of Salmonella spp. isolated from broiler chickens revealed presence of 7/24 (29, 16%) virulence genes (lpfA, csgA, sitC, sipB, sopB, sopE, and sivH). Regarding the strains isolated from cases of gastroenteritis in humans, all strains contained (14/24, 58, 33%) virulence genes (lpfA, csgA, pagC, msgA, spiA, sitC, iroN, sipB, orgA, hilA, sopB, sifA, avrA, and sivH). In summary, the presence of virulence genes in different strains of Salmonella isolated from broilers and humans could be described as bacteria with potential pathogenicity due to the type and number of virulence genes detected. These findings are beneficial for the pathogenic monitoring of Salmonella in Colombia.

3.
Dev Comp Immunol ; 130: 104353, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065954

RESUMO

Hepcidins are cysteine-rich peptides, which participate in iron metabolism regulation, the inflammatory and antimicrobial response. This study characterizes the hepcidin-1 (HAMP1) gene, its transcript expression in different tissues, as well as its regulation in a model of brain injury in Piaractus brachypomus. Bioinformatic analysis was carried out to determine conserved domains, glycosylation sites and protein structure of HAMP1, and probability that HAMP1 corresponds to an antimicrobial peptide (AMP). Relative gene expression of the P. brachypomus HAMP1 gene was determined by qPCR from cDNA of several tissues, a brain injury model, an organophosphate sublethal toxicity model and anesthetic experiment using the 2-ΔΔCt method. HAMP1 ORF encodes for a 91 aa pre-prohepcidin conformed for a prodomain with 42 aa and mature peptide of 25 aa. Mature domain was determined as an AMP. HAMP1 transcript is expressed in all the tissues, being higher in the spleen and liver. HAMP1 mRNA level was upregulated in the brain injury group, as well as in the olfactory bulb, optic chiasm and telencephalon of red-bellied pacu brain exposed to an organophosphate. In anesthetic experiment, HAMP1 mRNA level was upregulated in the liver and gills. HAMP1 gene of P. brachypomus may be involved in the inflammatory, antimicrobial, hypoxia and stress oxidative response.


Assuntos
Anti-Infecciosos , Lesões Encefálicas , Animais , Regulação da Expressão Gênica , Hepcidinas/genética , Hepcidinas/metabolismo , Organofosfatos , RNA Mensageiro/metabolismo
4.
Heliyon ; 7(3): e06570, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33869831

RESUMO

Global warming has been affecting animal husbandry and farming production worldwide via changes in organisms and their habitats. In the tropics, these conditions are adverse for agriculture and animal production in some areas, due to high temperatures and relative humidity, affecting competitiveness related to economic activities. These environments have deteriorated livestock production, due to periods of drought, reduction in forage quality and heat stress, eliciting negative effects on reproduction, weight gain, and reduced meat and milk production. However, the use of animals adapted to tropics such as breeds derived from subspecies Bos primigenius indicus and native breeds from tropical countries or their crossings, is an alternative to improve production under high-temperature conditions. Therefore, physiological adaptation including gene expression induced by heat stress have been studied to understand the response of animals and to improve cross-breeding between cattle breeds to maintain high productivity in adverse weather conditions. Heat stress has been associated with lower reproductive performance in cows, due to the impact on blastocyst production, decreased implantation and increased embryonic death. Thus, for decades, in vitro fertilization and embryo transfer techniques have focused on studying the optimal conditions for production of high-quality embryos to transfer. The aim of this review is to discuss the effects of heat stress in bovine embryos, and their physiological and genetic modulation, focusing on the genes that are related with major adaptability to heat stress conditions and their relationship with different embryonic stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...