Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Pharm ; 661: 124468, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013533

RESUMO

Cannabidiol (CBD) is the main non-psychotropic cannabinoid. It has attracted a great deal of interest in the treatment of several diseases such as inflammatory disorders and cancer. Despite its promising clinical interest, its administration is very challenging. In situ forming implants (ISFIs) could be a simple and cheap strategy to administer CBD while obtaining a prolonged effect with a single administration. This work aims to design, develop, and characterize for the first time ISFIs for the parenteral administration of CBD with potential application in cancer disease. Formulations made of PLGA-502, PLGA-502H, and PLA-202 in NMP or DMSO and PLA-203 in DMSO at a polymer concentration of 0.25 mg/µL and loaded with CBD at a drug: polymer ratio of 2.5:100 and 5:100 (w/w) were developed. The formulations prepared with NMP exhibited a faster drug release. CBD implants elaborated with PLGA-502 and DMSO with the highest CBD: polymer ratio showed the most suitable drug release for one month. This formulation was successfully formed in ovo onto the chorioallantoic chick membrane without exhibiting signs of toxicity and exhibited a superior antiangiogenic activity than CBD in solution administered at the same doses. Consequently, implants made of PLGA-502 and DMSO represent a promising strategy to effectively administer CBD subcutaneously as combination therapy in cancer disease.

2.
Eur J Pharm Biopharm ; 180: 149-160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220520

RESUMO

Abnormal angiogenesis plays a main role in the pathogenesis of many diseases such as cancer, and inflammatory autoimmune disorders among others, and its inhibition represents a potential strategy for their management. Celecoxib (CXB) that is one of the most prescribed selective COX-2 inhibitors and is currently approved for the treatment of osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis inhibits angiogenesis. The objective of this manuscript was to design, develop, and characterize polymeric nanoparticles for the parenteral administration of CXB which the aim of facilitating its administration and improving its antiangiogenic activity while decreasing its adverse effects. A Plackett-Burman design was used to optimize the formulation. The PVA concentration, the sonication time, the sonicator amplitude and the CXB:PLGA ratio were selected as independent variables and particle size, polydispersity index, drug loading, and entrapment efficiency as responses. Optimized nanoparticles (formulations F2, F6 and F9) showed a particle size around 280 nm, a low polydispersion (PDI ≤ 0.2), a negative zeta potential around -25 mV, a high entrapment efficiency (above 88 %) and a controlled drug release for at least 10 days. Moreover, they were physically and chemically stable for at least 3 months when stored at 4 °C. Interestingly, CXB-loaded nanoparticles showed a higher angiogenesis inhibition than CXB in solution administered at the same concentration. F9 nanoparticles that were prepared using PVA at 0.5 %, a sonication time of 7 min, a sonicator amplitude of 80 % and a CXB:PLGA ratio of 20:100 were selected as the most suitable CXB-formulation. It represents a promising strategy to administer CXB and improve its efficacy in disorders with pathological angiogenesis such as cancer and arthritic diseases.


Assuntos
Nanopartículas , Celecoxib/farmacologia , Celecoxib/química , Nanopartículas/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Tamanho da Partícula , Polímeros
3.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267507

RESUMO

Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody-drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody-drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.

4.
Pharmaceutics ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683998

RESUMO

In the last decade, antibody-drug conjugates (ADCs), normally formed by a humanized antibody and a small drug via a chemical cleavable or non-cleavable linker, have emerged as a potential treatment strategy in cancer disease. They allow to get a selective delivery of the chemotherapeutic agents at the tumor level, and, consequently, to improve the antitumor efficacy and, especially to decrease chemotherapy-related toxicity. Currently, nine antibody-drug conjugate-based formulations have been already approved and more than 80 are under clinical trials for the treatment of several tumors, especially breast cancer, lymphomas, and multiple myeloma. To date, no ADCs have been approved for the treatment of gynecological formulations, but many formulations have been developed and have reached the clinical stage, especially for the treatment of ovarian cancer, an aggressive disease with a low five-year survival rate. This manuscript analyzes the ADCs formulations that are under clinical research in the treatment of gynecological carcinomas, specifically ovarian, endometrial, and cervical tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...