Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 813964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479940

RESUMO

The Global Evaluation of SARS-CoV-2/hCoV-19 Sequences 2 (GESS v2 https://shiny.ph.iu.edu/GESS_v2/) is an updated version of GESS, which has offered a handy query platform to analyze single-nucleotide variants (SNVs) on millions of high coverages and high-quality severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complete genomes provided by the Global Initiative on Sharing Avian Influenza Data (GISAID). Including the tools in the first version, the GESS v2 is embedded with new functions, which allow users to search SNVs, given the viral nucleotide or amino acid sequence. The GESS v2 helps users to identify SNVs or SARS-CoV-2 lineages enriched in countries of user's interest and show the migration path of a selected lineage on a world map during specific time periods chosen by the users. In addition, the GESS v2 can recognize the dynamic variations of newly emerging SNVs in each month to help users monitor SNVs, which will potentially become dominant soon. More importantly, multiple sets of analyzed results about SNVs can be downloaded directly from the GESS v2 by which users can conduct their own independent research. With these significant updates, the GESS v2 will continue to serve as a public open platform for researchers to explore SARS-CoV-2 evolutionary patterns from the perspectives of the prevalence and impact of SNVs.

2.
J Med Virol ; 93(12): 6525-6534, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34245452

RESUMO

By analyzing newly collected SARS-CoV-2 genomes and comparing them with our previous study about SARS-CoV-2 single nucleotide variants (SNVs) before June 2020, we found that the SNV clustering had changed remarkably since June 2020. Apart from that the group of SNVs became dominant, which is represented by two nonsynonymous mutations A23403G (S:D614G) and C14408T (ORF1ab:P4715L), a few emerging groups of SNVs were recognized with sharply increased monthly incidence ratios of up to 70% in November 2020. Further investigation revealed sets of SNVs specific to patients' ages and/or gender, or strongly associated with mortality. Our logistic regression model explored features contributing to mortality status, including three critical SNVs, G25088T(S:V1176F), T27484C (ORF7a:L31L), and T25A (upstream of ORF1ab), ages above 40 years old, and the male gender. The protein structure analysis indicated that the emerging subgroups of nonsynonymous SNVs and the mortality-related ones were located on the protein surface area. The clashes in protein structure introduced by these mutations might in turn affect the viral pathogenesis through the alteration of protein conformation, leading to a difference in transmission and virulence. Particularly, we explored the fact that nonsynonymous SNVs tended to occur in intrinsic disordered regions of Spike and ORF1ab to significantly increase hydrophobicity, suggesting a potential role in the change of protein folding related to immune evasion.


Assuntos
COVID-19/mortalidade , Genoma Viral/genética , Polimorfismo de Nucleotídeo Único/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Poliproteínas/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais/genética , Virulência/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...