Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 244, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158844

RESUMO

BACKGROUND: The growth of rice is reduced by the slow decomposition of accumulated straw, which competes with rice for soil nitrogen nutrient. In recent year, straw-decomposing inoculants (SDIs) that can accelerate straw decomposition and ammonium nitrogen (N) fertilizer that can quickly generate available N is increasingly adopted in China. However, it is still unknown whether the N demand of straw decomposition and crop growth can be simultaneously met through the co-application of SDIs and ammonium N fertilizer. RESULTS: In this study, we investigated the effect of the co-application of SDIs and ammonium bicarbonate on decomposition rate of wheat straw, rice growth and rice yield over two consecutive years in rice-wheat rotation system. Compound fertilizer (A0) was used as control. The ratios of ammonium bicarbonate addition were 20% (A2), 30% (A3) and 40% (A4), respectively, without SDIs or with SDIs (IA2, IA3, IA4). Our results revealed that without SDIs, compared with A0, straw decomposition rate, rice growth and yield were improved under A2; However, under A3, rice yield was decreased due to the slow decomposition rate of straw and limited growth of rice during late growth stage. Combining SDIs and N fertilizer increased straw decomposition rate, rice growth rate and yield more than that of N fertilizer alone, especially under IA3. Compared with A0, straw decomposition rate, tiller number, aboveground biomass, leaf area index, root length, and nitrogen use efficiency were significantly increased by 16%, 8%, 27%, 12%, 17%, and 15% under IA3. Consequently, the average rice yield of IA3 was increased to 10,856 kg/ha, which was 13% and 9% higher, respectively, than of A0 and A2. CONCLUSION: Our results indicated that ammonium bicarbonate application alone carried a risk of nutrient deficiency during late growth stage and yield decline. Therefore, the co-application of SDIs and 30% ammonium N fertilizer substitution can be a favorable practice to simultaneously accelerate straw decomposition and increase rice crop growth.


Assuntos
Oryza , Fertilizantes , Bicarbonatos , Nitrogênio
2.
Ying Yong Sheng Tai Xue Bao ; 32(3): 959-966, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754562

RESUMO

To explore the optimal monitoring method for soil and plant analyzer development (SPAD) of winter wheat under waterlogging stress based on hyperspectral and digital image techno-logy, the correlations between SPAD of the waterlogged winter wheat and fifteen indices of hyperspectral characteristic and fourteen indices of digital image feature were analyzed under a micro-plot which could be irrigated and drainage separately. Then, the BP neural network models for SPAD estimation were constructed based on the optimal monitoring feature indices. Compared with the normal winter wheat, SPAD and the value of hyperspectral reflectance did not change under short-term waterlogging (less than 7 d), whereas the SPAD was significantly decreased after more than 12 d waterlogging treatment with the value being close to zero at the late stage of growth. The estimation accuracy based on the digital image characteristics of green minus red, excess red index, norma-lized redness index and excess green index showed similar results compared to that using the BP network model based on the characteristics of the corresponding hyperspectral band. The highest R2 between the measured value and the predicted value was 0.86, while the root mean square error (RMSE) was 3.98. Compared with the BP network models built with the digital image feathers, the accuracy of the models based on the four hyperspectral characteristic indices (carotenoid reflex index, yellow edge amplitude, normalized difference vegetation index and structure insensitive pigment index) for SPAD was significantly improved, with the highest R2 of 0.97 and the lowest RMSE of 1.95. Our results suggest that both hyperspectral and digital image technology could be used to estimate SPAD value of waterlogged winter wheat and that the BP network model based on hyperspectral characteristic indices performed better in the estimation accuracy.


Assuntos
Clorofila , Triticum , Folhas de Planta , Estações do Ano , Solo , Análise Espectral
3.
Plants (Basel) ; 9(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210167

RESUMO

This study aimed to improve nitrogen utilization and alleviate the inhibition of straw decomposition during early tillering and the growth of paddy after straw return. Specifically, three different nitrogen fertilizer (base fertilizer) application methods were tested under full straw return: applying the compound fertilizer once (J1), applying the compound fertilizer twice (J3) and applying the ammonium carbonate fertilizer plus compound fertilizer (J2). Full straw return without fertilizer (CK1) and no straw return without fertilizer (CK2) were used as the controls. The results showed that treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) significantly enhanced straw decomposition, light interception and dry matter accumulation at an early stage of tillering, but reduced tiller occurrence at a late tillering stage. Grain yield was affected due to reduced dry matter accumulation, nitrogen use efficiency and number of effective panicles. There were no significant differences in rice growth, nitrogen use efficiency and grain yield between the one-time or two-time compound fertilizer application methods. In contrast, treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) under full straw return effectively improved straw decomposition and accelerated the return of green and tillering. In addition, the proportion of ammonium carbonate fertilizer affected the nutrient utilization efficiency and yield at later stages.

4.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357526

RESUMO

Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.


Assuntos
Fertilizantes , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma , Biologia Computacional/métodos , Produtos Agrícolas , Perfilação da Expressão Gênica , Ontologia Genética , Nitrogênio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Característica Quantitativa Herdável
5.
Front Plant Sci ; 10: 357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972091

RESUMO

The effect of high temperatures on rice production has attracted considerable research attention. It is not clear, however, whether nitrogen (N) management can be used to alleviate the damaging effects of high temperatures on flowering in rice. In this study, we compared the yields of five elite super hybrid rice varieties and examined their heat tolerance under four N treatments in two seasons with contrasting temperatures at flowering: 2015 (normal temperature) and 2016 (high temperature). The average daily temperature during the flowering stage in 2016 was 31.1°C, which was 4.5°C higher than that in 2015. There was a significant positive correlation between grain yield and N level (R 2 = 0.42, P < 0.01). However, mean grain yield of the five rice varieties in 2015 was 10.5% higher than that in 2016. High N levels reduced yield losses in plants exposed to high temperature in 2016. The mean seed-set percentage in 2016 was 13.0% lower than that in 2015 at higher N levels, but spikelets per panicle increased by 7.6% at higher N levels compared with lower N levels. Higher N levels reduced the number of degenerated spikelets under high temperatures. Spikelets per panicle and N treatment level were positively correlated at high temperatures (R 2 = 0.32, P < 0.05). These results confirmed that increasing N application could alleviate yield losses caused by high temperatures in super hybrid rice during the flowering stage.

6.
Sci Rep ; 8(1): 131, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317720

RESUMO

Succeeding in breeding super hybrid rice has been considered as a great progress in rice production in China. This on-farm study was conducted with Minirhizotron techniques to identify dynamic root morphological traits and distribution (0-30 cm) under different nitrogen treatments. Five elite super hybrid rice cultivars, Liangyoupeijiu (LYPJ), Yliangyou 1(YLY1), Yliangyou 2(YLY2), Yliangyou 900(YLY900) and Super 1000(S1000), were grown at four N levels: 0 kg ha-1 (N1), 210 kg ha-1 (N2), 300 kg ha-1 (N3) and 390 kg ha-1 (N4) in 2015 and 2016. Results showed these cultivars had greater root traits and higher grain yield under N3. Total root number (TRN) and total root length (TRL) of these cultivars reached maximum at 55 days after transplanting (DAT). The new released cultivars YLY900 and S1000 were featured with an improved root system among these cultivars. The percentage of root number on 10-20 cm soil was over 50% compared with other soil layer. A significant positive correlation was found between grain yield and both TRN and TRL at 10-20 cm soil layer (P < 0.01). Given this situation, the grain yield of super rice cultivars could be further improved by increasing the proportion of roots at 10-20 cm soil layer under suitable nitrogen management.


Assuntos
Grão Comestível , Nitrogênio/metabolismo , Oryza/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Característica Quantitativa Herdável , Hibridização Genética , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Melhoramento Vegetal , Raízes de Plantas/efeitos dos fármacos , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...