Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 30(5): e13732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747971

RESUMO

BACKGROUND: Androgenic alopecia (AGA) is the most common non-scarring alopecia disorder. Given its increasing incidence and onset during adolescence, AGA significantly impacts both the physical and psychological well-being of affected individuals. Emerging evidence suggests a pivotal role of metabolites in AGA. This study aims to elucidate the causal relationship between metabolites and AGA using Mendelian randomization (MR) analysis. METHODS: We conducted a two-sample Mendelian randomization (TSMR) analysis based on a genome-wide association study (GWAS) to assess the causality of 452 metabolites on AGA. The main approach employed for inferring causal effects was inverse variance weighted (IVW), which was complemented by MR-Egger regression, weighted median, as well as MR pleiotropy residual sum and outlier (MR-PRESSO) approaches. Additionally, sensitivity analyses were performed to ensure result robustness. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) in GWAS dataset comprising 452 metabolites. RESULTS: Notably, we identified Scyllo-inositol and Alpha-ketoglutarate as the most potent protective factors against AGA, while Heme* and 2-palmitoylglycerophosphocholine* emerged as significant risk factors for AGA. Furthermore, sensitivity analysis revealed no heterogeneity in these findings. CONCLUSIONS: Overall, our research suggests a potential causal link between metabolites and AGA, offering a more comprehensive insight into the pathogenesis of AGA and present additional strategies for prevention and treatment.


Assuntos
Alopecia , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Alopecia/genética , Alopecia/metabolismo , Masculino , Heme/metabolismo , Feminino
2.
Clin Cosmet Investig Dermatol ; 17: 409-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371329

RESUMO

Purpose: To investigate whether increased levels of lipids-related metabolites (LRMs) result in androgenic alopecia (AGA). Patients and Methods: A two-sample Mendelian randomization (MR) study was designed, and single nucleotide polymorphisms (SNPs) respectively related to nine LRMs were selected from the genome-wide association study (GWAS) dataset. An MR analysis was performed to assess the causal association between LRMs and AGA. Results: Through the fixed-effect inverse variance weighting (IVW) method, MR analysis indicated that Apolipoprotein B (ApoB), low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) had a causal relationship with AGA. No obvious heterogeneity or pleiotropy was observed. Conclusion: The risk of AGA increases significantly when the serum levels of ApoB, LDL, and VLDL increase. This causal relationship is solid and free of interference from confounding factors.

3.
J Cosmet Dermatol ; 22(11): 2925-2929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667425

RESUMO

BACKGROUND: Hair diseases may present with hair loss, hirsutism, hair melanin abnormalities and other manifestations. Hair follicles are known as mini-organs that undergo periodic remodeling, and their constant regeneration in vivo reflects interesting anti-aging functions. Telomerase prevents cellular senescence by maintaining telomere length, but its excessive proliferation in cancer cells may also induce cancer. However, the effects of telomerase in hair growth have rarely been reported. METHODS: In this study, we reviewed the role of telomerase in hair growth and the effects of hair disorders through literature search and analysis. RESULTS: There is growing evidence that telomerase plays an important role in maintaining hair follicle function and proliferation. Changes in telomerase levels in hair follicles have also been found in a variety of hair disorders. CONCLUSION: Telomerase plays a positive role in hair growth and is expected to become a new target for the treatment of alopecia or other hair diseases in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...