Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(45): 17638-43, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17968012

RESUMO

Protein quality control is accomplished by inducing chaperones and proteases in response to an altered cellular folding state. In Escherichia coli, expression of chaperones and proteases is positively regulated by sigma32. Chaperone-mediated negative feedback control of sigma32 activity allows this transcription factor to sense the cellular folding state. We identified point mutations in sigma32 altered in feedback control. Surprisingly, such mutants are resistant to inhibition by both the DnaK/J and GroEL/S chaperones in vivo and also show dramatically increased stability. Further characterization of the most defective mutant revealed that it has almost normal binding to chaperones and RNA polymerase and is competent for chaperone-mediated inactivation in vitro. We suggest that the mutants identify a regulatory step downstream of chaperone binding that is required for both inactivation and degradation of sigma32.


Assuntos
Escherichia coli/genética , Proteínas de Choque Térmico/genética , Fator sigma/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Retroalimentação , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Mutação , Plasmídeos , Mutação Puntual
2.
Proc Natl Acad Sci U S A ; 102(4): 1157-62, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15650048

RESUMO

We compare the elongation behavior of native Escherichia coli RNA polymerase holoenzyme assembled in vivo, holoenzyme reconstituted from sigma70 and RNA polymerase in vitro, and holoenzyme with a specific alteration in the interface between sigma70 and RNA polymerase. Elongating RNA polymerase from each holoenzyme has distinguishable properties, some of which cannot be explained by differential retention or rebinding of sigma70 during elongation, or by differential presence of elongation factors. We suggest that interactions between RNA polymerase and sigma70 may influence the ensemble of conformational states adopted by RNA polymerase during initiation. These states, in turn, may affect the conformational states adopted by the elongating enzyme, thereby physically and functionally imprinting RNA polymerase.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Fator sigma/química , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/fisiologia , Conformação Proteica , Fator sigma/fisiologia
3.
Genes Dev ; 18(22): 2812-21, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15545634

RESUMO

The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, sigma32. The DnaK chaperone machine regulates both the amount and activity of sigma32, thereby coupling sigma32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate sigma32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of sigma32. We show that increasing the level of GroEL/S leads to a decrease in sigma32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of sigma32 by increasing the level of sigma32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to sigma32 and decreases sigma32-dependent transcription in vitro, suggesting that this regulation is direct. We discuss why using a chaperone network to regulate sigma32 results in a more sensitive and accurate detection of the protein folding environment.


Assuntos
Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/fisiologia , Resposta ao Choque Térmico/fisiologia , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Fator sigma/fisiologia , Transcrição Gênica , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , beta-Galactosidase/metabolismo
4.
Mol Cell ; 11(3): 659-69, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667449

RESUMO

FtsH, a member of the AAA family of proteins, is the only membrane ATP-dependent protease universally conserved in prokaryotes, and the only essential ATP-dependent protease in Escherichia coli. We investigated the mechanism of degradation by FtsH. Other well-studied ATP-dependent proteases use ATP to unfold their substrates. In contrast, both in vitro and in vivo studies indicate that degradation by FtsH occurs efficiently only when the substrate is a protein of low intrinsic thermodynamic stability. Because FtsH lacks robust unfoldase activity, it is able to use the protein folding state of substrates as a criterion for degradation. This feature may be key to its role in the cell and account for its ubiquitous distribution among prokaryotic organisms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Fator sigma , Proteases Dependentes de ATP , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico/metabolismo , Cinética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo , Especificidade por Substrato , Temperatura , Termodinâmica , Fatores de Tempo , Fatores de Transcrição/metabolismo
5.
Genes Dev ; 16(16): 2156-68, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12183369

RESUMO

All cells have stress response pathways that maintain homeostasis in each cellular compartment. In the Gram-negative bacterium Escherichia coli, the sigma(E) pathway responds to protein misfolding in the envelope. The stress signal is transduced across the inner membrane to the cytoplasm via the inner membrane protein RseA, the anti-sigma factor that inhibits the transcriptional activity of sigma(E). Stress-induced activation of the pathway requires the regulated proteolysis of RseA. In this report we show that RseA is degraded by sequential proteolytic events controlled by the inner membrane-anchored protease DegS and the membrane-embedded metalloprotease YaeL, an ortholog of mammalian Site-2 protease (S2P). This is consistent with the mechanism of activation of ATF6, the mammalian unfolded protein response transcription factor by Site-1 protease and S2P. Thus, mammalian and bacterial cells employ a conserved proteolytic mechanism to activate membrane-associated transcription factors that initiate intercompartmental cellular stress responses.


Assuntos
Proteínas de Bactérias/fisiologia , Endopeptidases/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Sítios de Ligação , Western Blotting , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrofotometria , Frações Subcelulares/metabolismo , Fatores de Tempo , Transdução Genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...