Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38871370

RESUMO

BACKGROUND AND PURPOSE: Verbal memory decline is a common complaint of patients with severe asymptomatic stenosis of the internal carotid artery (aICS). Previous publications explored the associations between verbal memory decline and altered functional connectivity (FC) after aICS. Patients with severe aICS may show reduced perfusion in the ipsilateral territory and redistribution of cerebral blood flow to compensate for the deficient regions, including expansion of the posterior and contralateral ICA territories via the circle of Willis. However, aICS-related FC changes in anterior and posterior territories and the impact of the sides of stenosis were less explored. This study aims to investigate the altered FC in anterior and posterior circulation territories of patients with left or right unilateral aICS and its association with verbal memory decline. MATERIALS AND METHODS: We enrolled 15 healthy controls (HCs), 22 patients with left aICS (aICSL), and 33 patients with right aICS (aICSR) to receive fMRI, Mini-Mental State Examination (MMSE), the Digit Span Test (DST), and the 12-item Chinese version of Verbal Learning Tests. We selected brain regions associated with verbal memory within anterior and posterior circulation territories. Territory-related FC alterations and verbal memory decline were identified by comparing the aICSL and aICSR groups with HC groups (P < .05, corrected for multiple comparisons), respectively. Furthermore, the association between altered FC and verbal memory decline was tested with the Pearson correlation analysis. RESULTS: Compared with HCs, patients with aICSL or aICSR had significant impairment in delayed recall of verbal memory. Decline in delayed recall of verbal memory was significantly associated with altered FC between the right cerebellum and right middle temporal pole in the posterior circulation territory (r = 0.40, P = .03) in the aICSR group and was significantly associated with altered FC between the right superior medial frontal gyrus and left lingual gyrus in the anterior circulation territory (r = 0.56, P = .01) in the aICSL group. CONCLUSIONS: Patients with aICSL and aICSR showed different patterns of FC alterations in both anterior and posterior circulation territories, which suggests that the side of aICS influences the compensatory mechanism for decline in delayed recall of verbal memory.

2.
Front Aging Neurosci ; 16: 1392304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863782

RESUMO

Background: Age-related decline in cognitive function is often linked to changed prefrontal cortex (PFC) activity and heart rate variability (HRV). Mild cognitive impairment (MCI), a transitional stage between normal aging and dementia, might have further degeneration beyond aging. This study aimed to investigate the differences between young and older adults with or without MCI in cognitive functions, task-induced PFC activation and HRV changes. Methods: Thirty-one healthy young adults (YA), 44 older adults (OA), and 28 older adults with MCI (OA-MCI) were enrolled and compared in this cross-sectional study. Each participant received a one-time assessment including cognitive and executive functions, as well as the simultaneous recording of PFC activity and HRV during a cognitive task paradigm. Results: We observed age-related decrease in global cognitive functions, executive functions, HRV, and increase in PFC activity. The MCI further deteriorated the global cognitive and executive performances, but not the HRV or the prefrontal activation. Conclusion: Older people showed lower performances in general cognitive function and executive function, compensatory increase of PFC activity, and reduced HRV. Older people with MCI had further deterioration in cognitive performance, but not in PFC activation and HRV.

3.
Radiother Oncol ; 197: 110344, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38806113

RESUMO

BACKGROUND: Accurate segmentation of lung tumors on chest computed tomography (CT) scans is crucial for effective diagnosis and treatment planning. Deep Learning (DL) has emerged as a promising tool in medical imaging, particularly for lung cancer segmentation. However, its efficacy across different clinical settings and tumor stages remains variable. METHODS: We conducted a comprehensive search of PubMed, Embase, and Web of Science until November 7, 2023. We assessed the quality of these studies by using the Checklist for Artificial Intelligence in Medical Imaging and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. This analysis included data from various clinical settings and stages of lung cancer. Key performance metrics, such as the Dice similarity coefficient, were pooled, and factors affecting algorithm performance, such as clinical setting, algorithm type, and image processing techniques, were examined. RESULTS: Our analysis of 37 studies revealed a pooled Dice score of 79 % (95 % CI: 76 %-83 %), indicating moderate accuracy. Radiotherapy studies had a slightly lower score of 78 % (95 % CI: 74 %-82 %). A temporal increase was noted, with recent studies (post-2022) showing improvement from 75 % (95 % CI: 70 %-81 %). to 82 % (95 % CI: 81 %-84 %). Key factors affecting performance included algorithm type, resolution adjustment, and image cropping. QUADAS-2 assessments identified ambiguous risks in 78 % of studies due to data interval omissions and concerns about generalizability in 8 % due to nodule size exclusions, and CLAIM criteria highlighted areas for improvement, with an average score of 27.24 out of 42. CONCLUSION: This meta-analysis demonstrates DL algorithms' promising but varied efficacy in lung cancer segmentation, particularly higher efficacy noted in early stages. The results highlight the critical need for continued development of tailored DL models to improve segmentation accuracy across diverse clinical settings, especially in advanced cancer stages with greater challenges. As recent studies demonstrate, ongoing advancements in algorithmic approaches are crucial for future applications.

4.
Circ J ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355108

RESUMO

BACKGROUND: The aim of this study was to build an auto-segmented artificial intelligence model of the atria and epicardial adipose tissue (EAT) on computed tomography (CT) images, and examine the prognostic significance of auto-quantified left atrium (LA) and EAT volumes for AF.Methods and Results: This retrospective study included 334 patients with AF who were referred for catheter ablation (CA) between 2015 and 2017. Atria and EAT volumes were auto-quantified using a pre-trained 3-dimensional (3D) U-Net model from pre-ablation CT images. After adjusting for factors associated with AF, Cox regression analysis was used to examine predictors of AF recurrence. The mean (±SD) age of patients was 56±11 years; 251 (75%) were men, and 79 (24%) had non-paroxysmal AF. Over 2 years of follow-up, 139 (42%) patients experienced recurrence. Diabetes, non-paroxysmal AF, non-pulmonary vein triggers, mitral line ablation, and larger LA, right atrium, and EAT volume indices were linked to increased hazards of AF recurrence. After multivariate adjustment, non-paroxysmal AF (hazard ratio [HR] 0.6; 95% confidence interval [CI] 0.4-0.8; P=0.003) and larger LA-EAT volume index (HR 1.1; 95% CI 1.0-1.2; P=0.009) remained independent predictors of AF recurrence. CONCLUSIONS: LA-EAT volume measured using the auto-quantified 3D U-Net model is feasible for predicting AF recurrence after CA, regardless of AF type.

5.
J Chin Med Assoc ; 87(5): 471-479, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380919

RESUMO

BACKGROUND: Preoperative estimation of the volume of the left atrium (LA) and epicardial adipose tissue (EAT) on computed tomography (CT) images is associated with an increased risk of atrial fibrillation (AF) recurrence. We aimed to design a deep learning-based workflow to provide reliable automatic segmentation of the atria, pericardium, and EAT for future applications in the management of AF. METHODS: This study enrolled 157 patients with AF who underwent first-time catheter ablation between January 2015 and December 2017 at Taipei Veterans General Hospital. Three-dimensional (3D) U-Net models of the LA, right atrium (RA), and pericardium were used to develop a pipeline for total, LA-EAT, and RA-EAT automatic segmentation. We defined fat within the pericardium as tissue with attenuation between -190 and -30 HU and quantified the total EAT. Regions between the dilated endocardial boundaries and endocardial walls of the LA or RA within the pericardium were used to detect voxels attributed to fat, thus estimating LA-EAT and RA-EAT. RESULTS: The LA, RA, and pericardium segmentation models achieved Dice coefficients of 0.960 ± 0.010, 0.945 ± 0.013, and 0.967 ± 0.006, respectively. The 3D segmentation models correlated well with the ground truth for the LA, RA, and pericardium ( r = 0.99 and p < 0.001 for all). The Dice coefficients of our proposed method for EAT, LA-EAT, and RA-EAT were 0.870 ± 0.027, 0.846 ± 0.057, and 0.841 ± 0.071, respectively. CONCLUSION: Our proposed workflow for automatic LA, RA, and EAT segmentation using 3D U-Nets on CT images is reliable in patients with AF.


Assuntos
Tecido Adiposo , Fibrilação Atrial , Aprendizado Profundo , Átrios do Coração , Pericárdio , Tomografia Computadorizada por Raios X , Humanos , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Tecido Adiposo/diagnóstico por imagem , Pericárdio/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fluxo de Trabalho , Tecido Adiposo Epicárdico
6.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339369

RESUMO

Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies, 10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76-0.86, p < 0.001) for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70-8.43, p < 0.001) for progression-free survival, and 2.15 (95% CI 1.73-2.66, p < 0.001) for overall survival at 6 months. Radiomics emerges as a potential prognostic predictor for lung cancer, but further research is needed to compare traditional radiomics and deep-learning radiomics.

7.
Eur Radiol ; 34(1): 588-599, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553487

RESUMO

OBJECTIVES: Angioarchitectural analysis of brain arteriovenous malformations (BAVMs) is qualitative and subject to interpretation. This study quantified the morphology of and signal changes in the nidal and perinidal areas by using MR radiomics and compared the performance of MR radiomics and angioarchitectural analysis in detecting epileptic BAVMs. MATERIALS AND METHODS: From 2010 to 2020, a total of 111 patients with supratentorial BAVMs were retrospectively included and grouped in accordance with the initial presentation of seizure. Patients' angiograms and MR imaging results were analyzed to determine the corresponding angioarchitecture. The BAVM nidus was contoured on time-of-flight MR angiography images. The perinidal brain parenchyma was contoured on T2-weighted images, followed by radiomic analysis. Logistic regression analysis was performed to determine the independent risk factors for seizure. ROC curve analysis, decision curve analysis (DCA), and calibration curve were performed to compare the performance of angioarchitecture-based and radiomics-based models in diagnosing epileptic BAVMs. RESULTS: In multivariate analyses, low sphericity (OR: 2012.07, p = .04) and angiogenesis (OR: 5.30, p = .01) were independently associated with a high risk of seizure after adjustment for age, sex, temporal location, and nidal volume. The AUC for the angioarchitecture-based, MR radiomics-based, and combined models was 0.672, 0.817, and 0.794, respectively. DCA confirmed the clinical utility of the MR radiomics-based and combined models. CONCLUSIONS: Low nidal sphericity and angiogenesis were associated with high seizure risk in patients with BAVMs. MR radiomics-derived tools may be used for noninvasive and objective measurement for evaluating the risk of seizure due to BAVM. CLINICAL RELEVANCE STATEMENT: Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation and MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation. KEY POINTS: • Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation. • The performance of MR radiomics in detecting epileptic brain arteriovenous malformations was more satisfactory than that of angioarchitectural analysis. • MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiômica , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Convulsões/diagnóstico por imagem , Convulsões/complicações , Malformações Arteriovenosas Intracranianas/complicações , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Angiografia por Ressonância Magnética , Espectroscopia de Ressonância Magnética
8.
Cancers (Basel) ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958300

RESUMO

Our study aimed to harness the power of CT scans, observed over time, in predicting how lung adenocarcinoma patients might respond to a treatment known as EGFR-TKI. Analyzing scans from 322 advanced stage lung cancer patients, we identified distinct image-based patterns. By integrating these patterns with comprehensive clinical information, such as gene mutations and treatment regimens, our predictive capabilities were significantly enhanced. Interestingly, the precision of these predictions, particularly related to radiomics features, diminished when data from various centers were combined, suggesting that the approach requires standardization across facilities. This novel method offers a potential pathway to anticipate disease progression in lung adenocarcinoma patients treated with EGFR-TKI, laying the groundwork for more personalized treatments. To further validate this approach, extensive studies involving a larger cohort are pivotal.

9.
J Magn Reson Imaging ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572087

RESUMO

BACKGROUND: Deep learning-based segmentation algorithms usually required large or multi-institute data sets to improve the performance and ability of generalization. However, protecting patient privacy is a key concern in the multi-institutional studies when conventional centralized learning (CL) is used. PURPOSE: To explores the feasibility of a proposed lesion delineation for stereotactic radiosurgery (SRS) scheme for federated learning (FL), which can solve decentralization and privacy protection concerns. STUDY TYPE: Retrospective. SUBJECTS: 506 and 118 vestibular schwannoma patients aged 15-88 and 22-85 from two institutes, respectively; 1069 and 256 meningioma patients aged 12-91 and 23-85, respectively; 574 and 705 brain metastasis patients aged 26-92 and 28-89, respectively. FIELD STRENGTH/SEQUENCE: 1.5T, spin-echo, and gradient-echo [Correction added after first online publication on 21 August 2023. Field Strength has been changed to "1.5T" from "5T" in this sentence.]. ASSESSMENT: The proposed lesion delineation method was integrated into an FL framework, and CL models were established as the baseline. The effect of image standardization strategies was also explored. The dice coefficient was used to evaluate the segmentation between the predicted delineation and the ground truth, which was manual delineated by neurosurgeons and a neuroradiologist. STATISTICAL TESTS: The paired t-test was applied to compare the mean for the evaluated dice scores (p < 0.05). RESULTS: FL performed the comparable mean dice coefficient to CL for the testing set of Taipei Veterans General Hospital regardless of standardization and parameter; for the Taichung Veterans General Hospital data, CL significantly (p < 0.05) outperformed FL while using bi-parameter, but comparable results while using single-parameter. For the non-SRS data, FL achieved the comparable applicability to CL with mean dice 0.78 versus 0.78 (without standardization), and outperformed to the baseline models of two institutes. DATA CONCLUSION: The proposed lesion delineation successfully implemented into an FL framework. The FL models were applicable on SRS data of each participating institute, and the FL exhibited comparable mean dice coefficient to CL on non-SRS dataset. Standardization strategies would be recommended when FL is used. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.

10.
Cancers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509204

RESUMO

In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111 patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87-4.19), suggesting that patients with certain radiomics features had a significantly higher risk of disease progression. Additionally, we calculated the pooled Harrell's concordance index and area under the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of radiomics. Despite these promising results, further studies with consistent and robust protocols are needed to confirm the prognostic role of radiomics in NSCLC.

11.
Phys Eng Sci Med ; 46(2): 585-596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36857023

RESUMO

The early prediction of overall survival (OS) in patients with lung cancer brain metastases (BMs) after Gamma Knife radiosurgery (GKRS) can facilitate patient management and outcome improvement. However, the disease progression is influenced by multiple factors, such as patient characteristics and treatment strategies, and hence satisfactory performance of OS prediction remains challenging. Accordingly, we proposed a deep learning approach based on comprehensive predictors, including clinical, imaging, and genetic information, to accomplish reliable and personalized OS prediction in patients with BMs after receiving GKRS. Overall 1793 radiomic features extracted from pre-GKRS magnetic resonance images (MRI), clinical information, and epidermal growth factor receptor (EGFR) mutation status were retrospectively collected from 237 BM patients who underwent GKRS. DeepSurv, a multi-layer perceptron model, with 4 different aggregation methods of radiomics was applied to predict personalized survival curves and survival status at 3, 6, 12, and 24 months. The model combining clinical features, EGFR status, and radiomics from the largest BM showed the best prediction performance with concordance index of 0.75 and achieved areas under the curve of 0.82, 0.80, 0.84, and 0.92 for predicting survival status at 3, 6, 12, and 24 months, respectively. The DeepSurv model showed a significant improvement (p < 0.001) in concordance index compared to the validated lung cancer BM prognostic molecular markers. Furthermore, the model provided a novel estimate of the risk-of-death period for patients. The personalized survival curves generated by the DeepSurv model effectively predicted the risk-of-death period which could facilitate personalized management of patients with lung cancer BMs.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Neoplasias Pulmonares , Radiocirurgia , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Receptores ErbB/genética
12.
Eur J Neurol ; 30(7): 2031-2041, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997303

RESUMO

BACKGROUND AND PURPOSE: A reliable neuroimaging biomarker to predict language improvement after neuromodulation in post-stroke aphasia is lacking. It is hypothesized that aphasic patients with stroke injuries in the left primary language circuits but with sufficient right arcuate fasciculus (AF) integrity might respond to low-frequency repetitive transcranial magnetic stimulation (LF-rTMS), leading to language improvement. This study aimed to assess the microstructural indices of the right AF before LF-rTMS treatment and further correlate with language improvement after the treatment. METHODS: Thirty-three patients with at least 3 months after stroke in the left hemisphere and nonfluent aphasia were recruited in this randomized double-blind study. All patients received real 1-Hz LF-rTMS (n = 16) or sham stimulation (n = 17) at the right pars triangularis for 10 consecutive weekdays. Fractional anisotropy, axial diffusivity, radial diffusivity and apparent diffusion coefficient of the right AF were extracted using diffusion tensor imaging before the rTMS treatment and correlated with the measured functional improvement by the Concise Chinese Aphasia Test. RESULTS: The Concise Chinese Aphasia Test change scores revealed a stronger language improvement in auditory/reading comprehension and expression in the rTMS group than in the sham group. Regression analysis showed that the pre-treatment fractional anisotropy, axial diffusivity and apparent diffusion coefficient of the right AF significantly correlated with the expression abilities (R2 > 0.700, p < 0.044) and comprehension abilities (R2 > 0.702, p < 0.039) in the rTMS group. CONCLUSIONS: It was concluded that the right AF could be a predictor in language recovery induced by LF-rTMS after the injuries of primary language circuits.


Assuntos
Afasia , Acidente Vascular Cerebral , Humanos , Estimulação Magnética Transcraniana/métodos , Imagem de Tensor de Difusão , Resultado do Tratamento , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
13.
J Neuroeng Rehabil ; 20(1): 27, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849990

RESUMO

BACKGROUND: Bihemispheric transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) can simultaneously modulate bilateral corticospinal excitability and interhemispheric interaction. However, how tDCS affects subacute stroke recovery remains unclear. We investigated the effects of bihemispheric tDCS on motor recovery in subacute stroke patients. METHODS: We enrolled subacute inpatients who had first-ever ischemic stroke at subcortical regions and moderate-to-severe baseline Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score 2-56. Participants between 14 and 28 days after stroke were double-blind, randomly assigned (1:1) to receive real (n = 13) or sham (n = 14) bihemispheric tDCS (with ipsilesional M1 anode and contralesional M1 cathode, 20 min, 2 mA) during task practice twice daily for 20 sessions in two weeks. Residual integrity of the ipsilesional corticospinal tract was stratified between groups. The primary efficacy outcome was the change in FMA-UE score from baseline (responder as an increase ≥ 10). The secondary measures included changes in the Action Research Arm Test (ARAT), FMA-Lower Extremity (FMA-LE) and explorative resting-state MRI functional connectivity (FC) of target regions after intervention and three months post-stroke. RESULTS: Twenty-seven participants completed the study without significant adverse effects. Nineteen patients (70%) had no recordable baseline motor-evoked potentials (MEP-negative) from the paretic forearm. Compared with the sham group, the real tDCS group showed enhanced improvement of FMA-UE after intervention (p < 0.01, effect size η2 = 0.211; responder rate: 77% vs. 36%, p = 0.031), which sustained three months post-stroke (p < 0.01), but not ARAT. Interestingly, in the MEP-negative subgroup analysis, the FMA-UE improvement remained but delayed. Additionally, the FMA-LE improvement after real tDCS was not significantly greater until three months post-stroke (p < 0.01). We found that the individual FMA-UE improvements after real tDCS were associated with bilateral intrahemispheric, rather than interhemispheric, FC strengths in the targeted cortices, while the improvements after sham tDCS were associated with predominantly ipsilesional FC changes after adjustment for age and sex (p < 0.01). CONCLUSIONS: Bihemispheric tDCS during task-oriented training may facilitate motor recovery in subacute stroke patients, even with compromised corticospinal tract integrity. Further studies are warranted for tDCS efficacy and network-specific neuromodulation. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov: (ID: NCT02731508).


Assuntos
Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Pacientes Internados , Córtex Cerebral , Método Duplo-Cego
14.
J Neurooncol ; 161(3): 441-450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635582

RESUMO

BACKGROUND: Rapid evolution of artificial intelligence (AI) prompted its wide application in healthcare systems. Stereotactic radiosurgery served as a good candidate for AI model development and achieved encouraging result in recent years. This article aimed at demonstrating current AI application in radiosurgery. METHODS: Literatures published in PubMed during 2010-2022, discussing AI application in stereotactic radiosurgery were reviewed. RESULTS: AI algorithms, especially machine learning/deep learning models, have been administered to different aspect of stereotactic radiosurgery. Spontaneous tumor detection and automated lesion delineation or segmentation were two of the promising application, which could be further extended to longitudinal treatment follow-up. Outcome prediction utilized machine learning algorithms with radiomic-based analysis was another well-established application. CONCLUSIONS: Stereotactic radiosurgery has taken a lead role in AI development. Current achievement, limitation, and further investigation was summarized in this article.


Assuntos
Inteligência Artificial , Radiocirurgia , Humanos , Prognóstico , Algoritmos , Aprendizado de Máquina
15.
Cancer Imaging ; 23(1): 9, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670497

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are a first-line therapy for non-small cell lung cancer (NSCLC) with EGFR mutations. Approximately half of the patients with EGFR-mutated NSCLC are treated with EGFR-TKIs and develop disease progression within 1 year. Therefore, the early prediction of tumor progression in patients who receive EGFR-TKIs can facilitate patient management and development of treatment strategies. We proposed a deep learning approach based on both quantitative computed tomography (CT) characteristics and clinical data to predict progression-free survival (PFS) in patients with advanced NSCLC after EGFR-TKI treatment. METHODS: A total of 593 radiomic features were extracted from pretreatment chest CT images. The DeepSurv models for the progression risk stratification of EGFR-TKI treatment were proposed based on CT radiomic and clinical features from 270 stage IIIB-IV EGFR-mutant NSCLC patients. Time-dependent PFS predictions at 3, 12, 18, and 24 months and estimated personalized PFS curves were calculated using the DeepSurv models. RESULTS: The model combining clinical and radiomic features demonstrated better prediction performance than the clinical model. The model achieving areas under the curve of 0.76, 0.77, 0.76, and 0.86 can predict PFS at 3, 12, 18, and 24 months, respectively. The personalized PFS curves showed significant differences (p < 0.003) between groups with good (PFS > median) and poor (PFS < median) tumor control. CONCLUSIONS: The DeepSurv models provided reliable multi-time-point PFS predictions for EGFR-TKI treatment. The personalized PFS curves can help make accurate and individualized predictions of tumor progression. The proposed deep learning approach holds promise for improving the pre-TKI personalized management of patients with EGFR-mutated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Intervalo Livre de Progressão , Intervalo Livre de Doença , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação
16.
Biomed J ; 46(1): 134-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066210

RESUMO

BACKGROUND: Although changes in diffusion characteristics of the brain parenchyma in neurological disorders are widely studied and used in clinical practice, the change in diffusivity in the cerebrospinal fluid (CSF) system is rarely reported. In this study, free water diffusion in the subarachnoid cisterns and ventricles of the rat brain was examined using diffusion magnetic resonance imaging (MRI), and the effects of neurological disorders on diffusivity in CSF system were investigated. METHODS: Diffusion MRI and T2-weighted images were obtained in the intact rats, 24 h after ischemic stroke, and 50 days after mild traumatic brain injury (mTBI). We conducted the assessment of diffusivity in the rat brain in the subarachnoid cisterns around the midbrain, as well as the lateral ventricles. One-way ANOVA and Kruskal-Wallis test were used to evaluate the change in mean diffusivity (MD) and MD histogram, respectively, in CSF system following different neurological disease. RESULTS: A significant decrease in the mean MD value of the subarachnoid cisterns was observed in the stroke rats compared with the intact and mTBI rats (p < 0.005). In addition, the skewness (p < 0.002), maximum MD (p < 0.002), and MD percentiles (p < 0.002) in the stroke rats differed significantly from those in the intact and mTBI rats. By contrast, no difference was observed in the mean MD value of the lateral ventricles among three groups of rats. We proposed that the assessment of the subarachnoid cisterns, rather than the lateral ventricles, in the rat brain would be useful in providing diffusion information in the CSF system. CONCLUSIONS: Alterations in MD parameters of the subarachnoid cisterns after stroke provide evidence that brain injury may alter the characteristics of free water diffusion not only in the brain parenchyma but also in the CSF system.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Ratos , Animais , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Lesões Encefálicas/patologia , Água
17.
Comput Methods Programs Biomed ; 229: 107311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577161

RESUMO

BACKGROUND AND OBJECTIVE: GKRS is an effective treatment for smaller intracranial tumors with a high control rate and low risk of complications. Target delineation in medical MR images is essential in the planning of GKRS and follow-up. A deep learning-based algorithm can effectively segment the targets from medical images and has been widely explored. However, state-of-the-art deep learning-based target delineation uses fixed sizes, and the isotropic voxel size may not be suitable for stereotactic MR images which use different anisotropic voxel sizes and numbers of slices according to the lesion size and location for clinical GKRS planning. This study developed an automatic deep learning-based segmentation scheme for stereotactic MR images. METHODS: We retrospectively collected stereotactic MR images from 506 patients with VS, 1,069 patients with meningioma and 574 patients with BM who had been treated using GKRS; the lesion contours and individual T1W+C and T2W MR images were extracted from the GammaPlan system. The three-dimensional patching-based training strategy and dual-pathway architecture were used to manage inconsistent FOVs and anisotropic voxel size. Furthermore, we used two-parametric MR image as training input to segment the regions with different image characteristics (e.g., cystic lesions) effectively. RESULTS: Our results for VS and BM demonstrated that the model trained using two-parametric MR images significantly outperformed the model trained using single-parametric images with median Dice coefficients (0.91, 0.05 versus 0.90, 0.06, and 0.82, 0.23 versus 0.78, 0.34, respectively), whereas predicted delineations in meningiomas using the dual-pathway model were dominated by single-parametric images (median Dice coefficients 0.83, 0.17 versus 0.84, 0.22). Finally, we combined three data sets to train the models, achieving the comparable or even higher testing median Dice (VS: 0.91, 0.07; meningioma: 0.83, 0.22; BM: 0.84, 0.23) in three diseases while using two-parametric as input. CONCLUSIONS: Our proposed deep learning-based tumor segmentation scheme was successfully applied to multiple types of intracranial tumor (VS, meningioma and BM) undergoing GKRS and for segmenting the tumor effectively from stereotactic MR image volumes for use in GKRS planning.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Neuroma Acústico , Radiocirurgia , Humanos , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiocirurgia/métodos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia
18.
Cancers (Basel) ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954461

RESUMO

Patient outcomes of non-small-cell lung cancer (NSCLC) vary because of tumor heterogeneity and treatment strategies. This study aimed to construct a deep learning model combining both radiomic and clinical features to predict the overall survival of patients with NSCLC. To improve the reliability of the proposed model, radiomic analysis complying with the Image Biomarker Standardization Initiative and the compensation approach to integrate multicenter datasets were performed on contrast-enhanced computed tomography (CECT) images. Pretreatment CECT images and the clinical data of 492 patients with NSCLC from two hospitals were collected. The deep neural network architecture, DeepSurv, with the input of radiomic and clinical features was employed. The performance of survival prediction model was assessed using the C-index and area under the curve (AUC) 8, 12, and 24 months after diagnosis. The performance of survival prediction that combined eight radiomic features and five clinical features outperformed that solely based on radiomic or clinical features. The C-index values of the combined model achieved 0.74, 0.75, and 0.75, respectively, and AUC values of 0.76, 0.74, and 0.73, respectively, 8, 12, and 24 months after diagnosis. In conclusion, combining the traits of pretreatment CECT images, lesion characteristics, and treatment strategies could effectively predict the survival of patients with NSCLC using a deep learning model.

19.
J Psychiatry Neurosci ; 47(3): E186-E193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508329

RESUMO

BACKGROUND: Frontal asymmetry plays a major role in depression. However, patients with treatment-resistant depression (TRD) have widespread hypofrontality. We investigated whether patients with TRD have a characteristic frontal activation pattern in functional near-infrared spectroscopy (fNIRS) findings and how the frontal cortex responds to different levels of cognitive tasks. METHODS: We enrolled 27 right-handed patients with TRD, 27 patients without TRD and 27 healthy controls. We used multichannel fNIRS to evaluate activation of the bilateral dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC) and left motor area in response to 3 tasks: finger tapping, a low cognitive-load motor task; verbal fluency, a moderate cognitive-load task; and a dual task involving simultaneous finger tapping and verbal fluency, a high cognitive-load task. RESULTS: We found significant between-group differences in left DLPFC activation for all 3 tasks. The healthy controls had cortical activation in the left motor area during finger tapping and the bilateral frontal cortex during the dual task. However, patients without TRD had right VLPFC activation during finger tapping and left DLPFC activation during the dual task. Patients with TRD had bilateral DLPFC activation during finger tapping but exhibited increased bilateral VLPFC and left motor area activation during verbal fluency and increased left motor area activation during the dual task. In healthy controls and patients without TRD, we found that the right VLPFC was positively correlated with depression severity. LIMITATIONS: Our cohort included only patients with late-onset depression. CONCLUSION: We found different patterns of abnormal frontal activation between patients with and without TRD. In patients without TRD, the right prefrontal cortex (PFC) was recruited during simple motor tasks. However, in patients with TRD, the bilateral PFC was recruited during simple tasks and motor cortical resources were used compensatorily during PFC-demanding complex cognitive tasks.


Assuntos
Transtorno Depressivo Maior , Córtex Motor , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos
20.
Comput Struct Biotechnol J ; 20: 1681-1690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465160

RESUMO

Coronary artery calcium (CAC) is a great risk predictor of the atherosclerotic cardiovascular disease and CAC scores can be used to stratify the risk of heart disease. Current clinical analysis of CAC is performed using onsite semiautomated software. This semiautomated CAC analysis requires experienced radiologists and radiologic technologists and is both demanding and time-consuming. The purpose of this study is to develop a fully automated CAC detection model that can quantify CAC scores. A total of 1,811 cases of cardiac examinations involving contrast-free multidetector computed tomography were retrospectively collected. We divided the database into the Training Data Set, Validation Data Set, Testing Data Set 1, and Testing Data Set 2. The Training, Validation, and Testing Data Set 1 contained cases with clinically detected CAC; Testing Data Set 2 contained those without detected calcium. The intraclass correlation coefficients between the overall standard and model-predicted scores were 1.00 for both the Training Data Set and Testing Data Set 1. In Testing Data Set 2, the model was able to detect clinically undetected cases of mild calcium. The results suggested that the proposed model's automated detection of CAC was highly consistent with clinical semiautomated CAC analysis. The proposed model demonstrated potential for clinical applications that can improve the quality of CAC risk stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...