Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6891, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898686

RESUMO

Developing efficient artificial photocatalysts for the biomimetic photocatalytic production of molecular materials, including medicines and clean energy carriers, remains a fundamentally and technologically essential challenge. Hydrogen peroxide is widely used in chemical synthesis, medical disinfection, and clean energy. However, the current industrial production, predominantly by anthraquinone oxidation, suffers from hefty energy penalties and toxic byproducts. Herein, we report the efficient photocatalytic production of hydrogen peroxide by protonation-induced dispersible porous polymers with good charge-carrier transport properties. Significant photocatalytic hydrogen peroxide generation occurs under ambient conditions at an unprecedented rate of 23.7 mmol g-1 h-1 and an apparent quantum efficiency of 11.3% at 450 nm. Combined simulations and spectroscopies indicate that sub-picosecond ultrafast electron "localization" from both free carriers and exciton states at the catalytic reaction centers underlie the remarkable photocatalytic performance of the dispersible porous polymers.

2.
Small ; 19(18): e2207720, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732904

RESUMO

Conjugated coordination polymers (CCPs) have attracted extensive attention for various applications related to energy storage and conversion in the past few years, despite that there are many CCPs with unclear chemical states and structures. Here, linear CCPs (LCCPs), with metal-O4 active sites grown on carbon paper (CP) for oxygen evolution reaction (OER), are presented. The LCCPs with high crystallinity and simple structures exhibit the order of electrocatalytic activity of Co-O4  > Ni-O4  > Fe-O4 in terms of the metal-O4 centers. The Co-based LCCP shows higher OER performance (263 mV at 10 mA cm-2 ) and better durability (90 h at 30 mA cm-2 ) than commercial IrO2 /CP. The structures and chemical states of LCCPs are carefully investigated, and density functional theory is used to reveal the mechanism of OER at the central metal site. This investigation into LCCPs provides new sights for a better understanding of CCPs and expands the applications of LCCPs with metal-O4 sites.

3.
J Am Chem Soc ; 144(40): 18218-18222, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069433

RESUMO

We report a multi-component synthetic strategy on a two-dimensional crystalline covalent organic framework (COF) by connecting acetonitrile with aromatic aldehyde and acetaldehyde moieties to form an unprecedented cyano-substituted buta-1,3-diene linkage. Different from most of the COFs that were crystallized from the condensations from two components, the presented COF is generated from two competitive and reversible reactions among three moieties. The buta-1,3-diene COF exhibits remarkable photoactivity with a low exciton binding energy of 44.4 ± 1.5 meV for promoted charge separation, which enables the buta-1,3-diene-linked COF as an efficient photocatalyst for various aerobic oxidation reactions under visible light. Our multi-component synthesis strategy may provide new sights for synthesizing COFs with structural diversity and functional variability that are hard to achieve by traditional COF synthesis.

4.
Chem Sci ; 13(29): 8679-8685, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974752

RESUMO

Designing delocalized excitons with low binding energy (E b) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high E b of >300 meV. In this work, we report the achievement of a low E b of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low E b facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low E b for efficient photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...