Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(50): 76286-76297, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35668254

RESUMO

The promotion of new energy in light-duty vehicles (LDVs) is considered as an effective approach for achieving low-carbon road transport targets. In this study, life cycle assessment was performed for five typical vehicle models in Suzhou City (fourth largest LDV stock in China): internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV), plug-in electric vehicle (PHEV), battery electric vehicle (BEV) and hydrogen fuel cell vehicle (HFCV). Their energy consumption, and greenhouse gas (GHG) and air pollutant emissions during vehicle and fuel cycles in 2020 were examined using the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. GHG emission reduction potential of LDV fleet was projected under various scenarios for 2021-2040. The results showed that BEVs exhibited advantages for replacing ICEVs over HEVs, PHEVs and HFCVs, taking into account China's road electrification policy. The GHG emission intensity of BEVs in 2040 was estimated to be 19-34% of ICEVs in 2020, with a deep decarbonized electricity mix and improved vehicle efficiency. For the aggressive Sustainable Development Scenario, the GHG emissions of LDVs would peak before 2026, ahead of China's target by 2030, and the ~ 100% share of EVs in 2040 would result in a lower GHG emissions, equivalent to the 2010 level. It highlights the importance of early action, green electricity mix, and public transport development in reducing GHG emissions of large LDV fleet.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Carbono , China , Eletricidade , Gasolina/análise , Efeito Estufa , Hidrogênio , Veículos Automotores , Emissões de Veículos/análise
2.
Sci Total Environ ; 786: 147511, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975108

RESUMO

Application of in situ chemical oxidation or reduction (ISCO/ISCR) technologies for contaminated soil remediation and its subsequent impact on soil is gaining increased attention. Reductive reactivity, generated from green tea (GT) extract mixed with ferrous (Fe2+) ions under alkaline conditions (the alkaline GT/Fe2+ system), has been considered as a promising ISCR process; however, its impact on soil has never been studied. In this study, the impact of applying the alkaline GT/Fe2+ system on soil was evaluated by analyzing the variations of the soil microbial community, diversity, and richness using next-generation 16S rRNA amplicon sequencing while mimicking the lindane-contaminated soil remediation procedure. Lindane was reductively degraded by the alkaline GT/Fe2+ system with reaction rate constants of 0.014 to 0.057 µM/h depending on the lindane dosage. Environmental change to the alkaline condition significantly decreased the microbial diversity and richness, but the recovery of the influence was observed subsequently. Bacteria that mainly belong within the phylum Firmicutes, including Salipaludibacillus, Anaerobacillus, Bacillaceae, and Paenibacillaceae, were greatly enhanced due to the alkaline condition. Besides, the dominance of heterotrophic, iron-metabolic, lindane-catabolic, and facultative bacteria was observed in the other corresponding conditions. From the results of principal component analysis (PCA), although dominant microbes all shifted significantly at every lindane-existing condition, the set of optimal lindane treatment with the alkaline GT/Fe2+ system had a minimized effect on the plant growth-promoting bacteria (PGPB). Nitrogen-cycling-related PGPB is sensitive to all factors of the alkaline GT/Fe2+ system. However, the other types, including plant-growth-inducer producing, phosphate solubilizing, and siderophore producing PGPB, has less impact under the optimal treatment. Our results demonstrate that the alkaline GT/Fe2+ system is an effective and soil-ecosystem-friendly ISCR remediation technology for lindane contamination.


Assuntos
Microbiota , Poluentes do Solo , Hexaclorocicloexano/análise , Ferro , RNA Ribossômico 16S , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...