Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (152)2019 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657790

RESUMO

Computational tools based on density-functional theory (DFT) enable the exploration of the qualitatively new, experimentally attainable nanoscale compounds for a targeted application. Theoretical simulations provide a profound understanding of the intrinsic electronic properties of functional materials. The goal of this protocol is to search for photocatalyst candidates by computational dissection. Photocatalytic applications require suitable band gaps, appropriate band edge positions relative to the redox potentials. Hybrid functionals can provide accurate values of these properties but are computationally expensive, whereas the results at the Perdew-Burke-Ernzerhof (PBE) functional level could be effective for suggesting strategies for band structure engineering via electric field and tensile strain aiming to enhance the photocatalytic performance. To illustrate this, in the present manuscript, the DFT based simulation tool VASP is used to investigate the band alignment of nanocomposites in combinations of nanotubes and nanoribbons in the ground state. To address the lifetime of photogenerated holes and electrons in the excited state, nonadiabatic dynamics calculations are needed.


Assuntos
Fenômenos Biofísicos/fisiologia , Elétrons , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...