Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 11-21, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003033

RESUMO

Microbial oxidation and the mechanism of Sb(III) are key governing elements in biogeochemical cycling. A novel Sb oxidizing bacterium, Klebsiella aerogenes HC10, was attracted early and revealed that extracellular metabolites were the main fractions driving Sb oxidation. However, linkages between the extracellular metabolite driven Sb oxidation process and mechanism remain elusive. Here, model phenolic and quinone compounds, i.e., anthraquinone-2,6-disulfonate (AQDS) and hydroquinone (HYD), representing extracellular oxidants secreted by K. aerogenes HC10, were chosen to further study the Sb(III) oxidation mechanism. N2 purging and free radical quenching showed that oxygen-induced oxidation accounted for 36.78% of Sb(III) in the metabolite reaction system, while hydroxyl free radicals (·OH) accounted for 15.52%. ·OH and H2O2 are the main driving factors for Sb oxidation. Radical quenching, methanol purification and electron paramagnetic resonance (EPR) analysis revealed that ·OH, superoxide radical (O2•-) and semiquinone (SQ-•) were reactive intermediates of the phenolic induced oxidation process. Phenolic-induced ROS are one of the main oxidants in metabolites. Cyclic voltammetry (CV) showed that electron transfer of quinone also mediated Sb(III) oxidation. Part of Sb(V) was scavenged by the formation of the secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the incubation system. Our study demonstrates the microbial role of oxidation detoxification and mineralization of Sb and provides scientific references for the biochemical remediation of Sb-contaminated soil.


Assuntos
Antimônio , Oxirredução , Espécies Reativas de Oxigênio , Transporte de Elétrons , Antimônio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Environ Sci Pollut Res Int ; 31(25): 37848-37861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38795294

RESUMO

Arsenic (As) is one extremely hazardous and carcinogenic metalloid element. Due to mining, metal smelting, and other human activities, the pollution of water (especially groundwater) and soil caused by As is increasingly serious, which badly threatens the environment and human health. In this study, a zeolite imidazolate framework (ZIF-8) was synthesized at room temperature and employed as an adsorbent to facilitate the adsorption of As(III) and As(V) from the solution. The successful synthesis of ZIF-8 was demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that its particle size was approximately 80 nm. The adsorption kinetics, adsorption isotherm, solution pH, dose, coexisting ions, and the synonymous elements antimony (Sb) were conducted to study the adsorption of As by ZIF-8 nanoparticles. The maximum saturation adsorption capacity was determined to be 101.47 mg/g and 81.40 mg/g for As(III), and As(V) at initial pH = 7.0, respectively. Apparently, ZIF-8 had a good removal effect on As, and it still maintained a good performance after four cycles. The coexisting ions PO43- and CO32- inhibited the adsorption of both As(III) and As(V). ZIF-8 performed well in removing both As and Sb simultaneously, although the presence of Sb hindered the adsorption of both As(III) and As(V). Both FTIR and XPS indicated the adsorption mechanism of As on ZIF-8: ZIF-8 generates a large amount of Zn-OH on the surface through hydrolysis and partial fracture of Zn-N, both of which form surface complexes with As.


Assuntos
Arsênio , Poluentes Químicos da Água , Zeolitas , Adsorção , Zeolitas/química , Arsênio/química , Poluentes Químicos da Água/química , Imidazóis/química , Cinética , Purificação da Água/métodos , Difração de Raios X , Concentração de Íons de Hidrogênio
3.
Environ Geochem Health ; 45(5): 2533-2547, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36036341

RESUMO

Long-term mining activities have caused serious heavy metals contamination of farmland soils. In this study, we investigated the concentrations, distributions, accumulations, potential ecological risk, and sources of eight heavy metals in farmland soils of Pb-Zn mining areas. According to the soil standard GB15618-2018, Cd was the most contaminated, followed by Pb and Zn. The geo-accumulation index showed that Pb, Zn, Cd, and Hg accumulated seriously. The potential risk index indicated that Cd, Hg, and Pb were the main environmental risk elements. An integrated approach combining multivariate statistical analysis, PMF, and GIS mapping was used to analyze the sources of heavy metals. Four main sources were identified and quantified: (1) mining activities source, the main source of Cd (71.09%) and Zn (61.88%); (2) agricultural activities source, dominated by Hg (73.01%); (3) atmospheric deposition sources, with Pb (85.11%) as the main contributor; (4) natural source, characterized by Cr (72.96%), Ni (66.04%), As (55.98%) and Cu (37.70%). This study would help us understand the pollution characteristics and sources of farmland soils in mining areas and provide basic information for the next step of pollution control and remediation.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Fazendas , Chumbo/análise , Cádmio/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Mineração , Mercúrio/análise , Zinco/análise , China , Medição de Risco
4.
Chemosphere ; 293: 133453, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34971630

RESUMO

Resistant bacteria are potential natural materials for the bioremediation of soil metalloid pollution. A strain isolated from farmland soil chronically exposed to Sb was identified as K. aerogenes X with high antimonite [Sb(III)] tolerance and oxidation ability. The resistance mechanism of K. aerogenes X and its extracellular polymeric substances (EPS), antioxidant enzymes, and oxidation characteristics in Sb(III) stress were investigated in this study by stress incubation experiments and FTIR. The biotoxicity of Sb was limited by the binding of the organic compounds in EPS, and the anionic functional groups (e.g., amino, carboxyl and hydroxyl groups, etc.) present in the cell envelope were the components primarily responsible for the metalloid-binding capability of K. aerogenes X. The K. aerogenes X can oxidize Sb(III), and its metabolites induce changes in reactive oxygen species (ROS), catalase (CAT), total superoxide dismutase (SOD) and glutathione s-transferase (GSH-S) activity, indicating that the resistance mechanisms of K. aerogenes X are mediated by oxidative stress, EPS restriction and cell damage. Oxidation of Sb(III) is driven by interactions in intracellular oxidation, cell electron transport, extracellular metabolism including proteins and low molecular weight components (LMWs). LMWs (molecular weight <3 kDa) are the main driving factor of Sb(III) oxidation. In addition, Sb resistance genes arsA, arsB, arsC, arsD and acr3 and potential oxidation gene arsH were identified in K. aerogenes X. Owing to its natural origin, high tolerance and oxidation ability, K. aerogenes X could serve as a potential bioremediation material for the mitigation of Sb(III) in contaminated areas.


Assuntos
Enterobacter aerogenes , Biodegradação Ambiental , Oxirredução , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...