Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nat Genet ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977857

RESUMO

To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.

2.
Carbohydr Polym ; 342: 122384, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048195

RESUMO

As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.


Assuntos
Antibacterianos , Antivirais , Celulose , Quitosana , Escherichia coli , Staphylococcus aureus , Ácidos Sulfônicos , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/farmacologia , Antivirais/farmacologia , Antivirais/química , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Ácidos Sulfônicos/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Humanos
4.
Int J Biol Macromol ; 272(Pt 2): 132772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821299

RESUMO

Bacteria and virus infections have posed a great threat to public health and personnel safety. For realizing rapid sterilization of the bacteria and virus, electrical stimulation sterilization was adopted to endow cellulose fibers with instantaneous antibacterial and antiviral properties. In the proposed strategy, the fiber is fluffed by mechanical refining, and then by means of the hydrogen bond between hydroxyl and aniline, the polyaniline (PANI) directionally grows vertically along the fine fibers via in-situ oxidative polymerization. Benefiting from the conductive polyaniline nanorod arrays on the fiber stem, the paper made from PANI modified refined fibers (PANI/BCF/P) exhibited excellent antibacterial and antiviral activity, the inhibition rates against S. aureus, E. coli, and bacteriophage MS2 can up to 100 %, 100 %, and 99.89 %, respectively when a weak voltage (2.5 V) was applied within 20 min. This study provides a feasible path for plant fiber to achieve efficient antibacterial and antiviral activity with electrical stimulation, which is of great significance for the preparation of electroactive antibacterial and antiviral green health products.


Assuntos
Compostos de Anilina , Antibacterianos , Celulose , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Celulose/química , Celulose/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Estimulação Elétrica , Esterilização/métodos , Antivirais/química , Antivirais/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Levivirus/efeitos dos fármacos
5.
Commun Biol ; 7(1): 474, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637717

RESUMO

Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition. The growth and development of plants can perturb the dynamic accumulation of ct-siRNAs from different gene loci. Two nitrate reductase genes, NIA1 and NIA2, produce massive amounts of 22-nt ct-siRNAs and are highly expressed in a subtype of mesophyll cells where DCL2 exhibits higher expression relative to DCL4, suggesting a potential role of cell-specific expression of ct-siRNAs. Overall, our findings unveil the multifaceted factors and features involved in the selective production and regulation of ct-siRNAs and enrich our understanding of gene silencing process in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Plantas/metabolismo
7.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365722

RESUMO

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Feminino , Humanos , Camundongos , Gravidez , Proliferação de Células , Dieta , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite , Sus scrofa
8.
Zhongguo Zhen Jiu ; 44(2): 209-213, 2024 Feb 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38373769

RESUMO

A sustainable training system for acupuncture-moxibustion and tuina professionals, integrating "medicine, industry, education and research" is established, under the main framework of the medicine-engineering interdiscipline, and with the consideration of the issues of medicine, the application of engineering technology, the thinking approaches of sciences, and the collaboration of business studies. It is the potential power to support the development of traditional medicine. Through analyzing the difficulties of the medicine-engineering interdiscipline of acupuncture specialty, and in association with the experiences of the early-stage development of the collaboration between medicine and engineering, the paper presents the cases of China's higher education reform and transformation under the background of "emerging medical education" so as to explore a replicable personnel training mode.


Assuntos
Terapia por Acupuntura , Acupuntura , Educação Médica , Moxibustão , Humanos , Acupuntura/educação , China
9.
Int Wound J ; 21(1): e14401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709499

RESUMO

BACKGROUND: Dressing change is the most important part of postoperative wound care. The aim of this study was to evaluate whether a more effective, simple and less painful method of dressing change for anal fistulas could be found without the need for debridement and packing. Data related to postoperative recovery were recorded at postoperative days 3, 7, 14, 21 and 180. METHODS: In this experiment, 76 subjects diagnosed with high anal fistula were randomly divided into a simplified dressing change (SDC) group and a traditional debridement dressing change(TDDC) group according to a ratio of 1:1. RESULTS: The SDC group had significantly fewer pain scores, bleeding rates, dressing change times, inpatient days and lower average inpatient costs than the TDDC group. There were no significant differences in wound healing time, area and depth and Wexner score between the two groups. CONCLUSIONS: Studies have shown that the use of simplified dressing changes does not affect cure or recurrence rates, but significantly reduces dressing change times and pain during changes, reducing patient inpatient length of stay and costs.


Assuntos
Fístula Retal , Humanos , Estudos Prospectivos , Fístula Retal/cirurgia , Cicatrização , Dor , Bandagens , Resultado do Tratamento
10.
Adv Sci (Weinh) ; 11(3): e2304776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009474

RESUMO

Fluorescent hydrogels have emerged as one of the most promising candidates for developing biomimetic materials and artificial intelligence owing to their unique fluorescence and responsive properties. However, it is still challenging to fabricate hydrogel that exhibits synergistic changes in fluorescence color and shape in response to multistimulus via a simple method. Herein, blue- and orange-emitting fluorescent microgels (MGs) both are designed and synthesized with pH-, thermal-, and cationic-sensitivity via one-step polymerization, respectively. The two fluorescent MGs are incorporated into transparent doubly crosslinked microgel (DX MG) hydrogels with a preset ratio. The DX MG hydrogels can tune the fluorescent color accompanied by size variation via subjecting to external multistimulus. Thus, DX MG hydrogels can be exploited for multiresponsive fluorescent bilayer actuators. The actuators can undergo complex shape deformation and color changes. Inspired by natural organisms, an artificial morning glory with color and size changes are showcased in response to buffer solutions of different pH values. Besides, an intelligent skin hydrogel, imitating natural calotes versicolor, by assembling four layers of DX MG with different ratios of MGs, is tailored. This work serves as an inspiration for the design and fabrication of novel biomimetic smart materials with synergistic functions.

11.
Innovation (Camb) ; 5(1): 100542, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38144040

RESUMO

Reconstruction of osteochondral (OC) defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues. The revolutionary innovation of bioprinting provides a robust method for precise fabrication of tissue-engineered OCs with hierarchical structure; however, their spatial living cues for simultaneous fulfilment of osteogenesis and chondrogenesis to reconstruct the cartilage-bone interface of OC are underappreciated. Here, inspired by natural OC bilayer features, anisotropic bicellular living hydrogels (ABLHs) simultaneously embedding articular cartilage progenitor cells (ACPCs) and bone mesenchymal stem cells (BMSCs) in stratified layers were precisely fabricated via two-channel extrusion bioprinting. The optimum formulation of the 7% GelMA/3% AlgMA hydrogel bioink was demonstrated, with excellent printability at room temperature and maintained high cell viability. Moreover, the chondrogenic ability of ACPCs and the osteogenic ability of BMSCs were demonstrated in vitro, confirming the inherent differential spatial regulation of ABLHs. In addition, ABLHs exhibited satisfactory synchronous regeneration of cartilage and subchondral bone in vivo. Compared with homogeneous hydrogels, the neo-cartilage and neo-bone in ABLHs were augmented by 23.5% and 20.8%, respectively, and more important, a more harmonious cartilage-bone interface was achieved by ABLHs due to their well-tuned cartilage-bone-vessel crosstalk. We anticipate that such a strategy of tissue-mimetic ABLH by means of bioprinting is capable of spatiotemporal cell-driven regeneration, offering insights into the fabrication of anisotropic living materials for the reconstruction of complex organ defects.

12.
Noncoding RNA Res ; 8(4): 675-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860266

RESUMO

Researches indicate miR-3200 is closely related to tumorigenesis, However, the role of miR-3200 in human hepatocarcinogenesis is still unclear. In this study, we clearly demonstrate that miR-3200 accelerates the growth of liver cancer cells in vivo and in vitro. Obviously, these findings are noteworthy that miR-3200 affects the transcriptional regulation for several genes, including DSP,BABAM2, Rab7A,SQSTM1,PRKAG2,CDK1,ABCE1,BECN1,PTEN,UPRT. And miR-3200 affects the transcriptional ability of several genes, such as, upregulating CADPS, DSP,FBXO32, PPCA,SGK1, PATXN7L1, PLK2,ITGB5,FZD3,HOXC8,HSPA1A,C-Myc,CyclnD1,CyclinE,PCNA and down -regulating SUV39H1, MYO1G, OLFML3, CBX5, PPDE2A, HOXA7, RAD54L, CDC45,SHMT7,MAD2L1,P27,IQGAP3,PTEN,P57,SCAMP3,etc...On the other hand, it is obvious that miR-3200 affects the translational ability of several genes, such as, upregulating GNS,UPRT,EIFAD,YOS1,SGK1,K-Ras,PKM2,C-myc,Pim1,CyclinD1,mTOR,erbB-2,CyclinE,PCNA,RRAS,ARAF,RAPH1,etc.. and down-regulating KDM2A, AATF, TMM17B, RAB8B, MYO1G,P21WAF1/Cip1,GADD45,PTEN,P27,P18,P57,SERBP1,RPL34,UFD1,Bax,ANXA6,GSK3ß. Strikingly, miR-3200 affects some signaling pathway in liver cancer, including carbon metabolism signaling pathway, DNA replication pathway, FoxO signaling pathway, Hippo signaling pathway, serine and threonine metabolism signaling pathway, mTOR signaling pathway, Fatty acid biosynthesis signaling pathway, carcinogenesis-receptor activation signaling pathway, autophagy signaling pathway. Furthermore, our results suggest that miR-3200 enhances expression of RAB7A, and then Rab7A regulates the carcinogenic function of miR-3200 by increasing telomere remodeling in human liver cancer. These results are of great significance for the prevention and treatment of human liver cancer.

13.
Cell Death Dis ; 14(10): 656, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813835

RESUMO

Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil.


Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Polifenóis/farmacologia , Polifenóis/metabolismo , Neutrófilos/metabolismo , Ácido Elágico/metabolismo , Ácido Elágico/farmacologia , Colite/metabolismo , Inflamação/patologia , Dieta , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/patologia
14.
Noncoding RNA Res ; 8(4): 641-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37810370

RESUMO

miRNA is a noncoding RNA found in recent years and more than one third of human genes are the target of miRNAs. miR-624, located on human chromosome 14, is associated with tumorigenesis. However, the role of miR-624 in human hepatocarcinogenesis is still unclear. Herein, our results indicate that miR-624 accelerates the growth of liver cancer cells in vivo and in vitro. Moreover, the modification distribution of H3K9me1 on chromosomes is different between rLV group and rLV-miR-624 group. miR-624 affects epigenetic regulation of several genes in human liver cancer cells, such as RAB21, SMARCD3, MAPK6,PRRX1, ZFHX3, EMC3 (TMEM111). Furthermore, miR-624 affects transcriptome of some genes in liver cancer, including RAB21, UBE2N, PPP1CC,KPNA3, RAB7A,CPEB2,KLF4, MARK2, JUN, ARF6, TMEM39A. On the other hand, miR-624 affects proteome of several genes in liver cancer, such as, RBM5,PTK2, KDM2A,POLR2H, POLR2G,CDK6,KIF15,CUL2,FKBP2,ErbB-3,JUN, PKM2, CyclinE,PLK1, mTOR, PPARγ, Rab7A,ARAF, UPF3B ,PTEN, SUZ12, GADD45, H3.3, CUL5, ARF6,EMC3,ATG4B,ATG14,CALR. Interestingly, miR-624 affects the RAB7A interaction network in liver cancer cells, involving in CLTC,ITGB1,HNRNPU, DARS1, RPS16, CTPS1,H3-3B,JUN,MYH10, CUL5, CPSF7. Strikingly, excessive MEC3 abrogates the carcinogenic functions of miR-624. Importantly, our findings indicate that miR-624 affects some signaling pathway in liver cancer, including Wnt signaling pathway,Hippo signaling pathway,mTOR signaling pathway, Ras signaling pathway,MAPK signaling pathway,PI3K-Akt signaling pathway, erbB signaling pathway. These results provide a basis for the treatment of human liver cancer.

16.
Cell Signal ; 109: 110772, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321526

RESUMO

BACKGROUND: Although CircHULC was overexpressed in several cancers, the role of CircHULC in malignancies has yet to be elucidated. METHODS: Gene infection, tumorigenesis test in vitro and in vivo and the signaling pathway analysis were performed. RESULTS: our results indicate that CircHULC promotes growth of human liver cancer stem cells and the malignant differentiation of hepatocyte-like cells. Mechanistically, CircHULC enhances the methylation modification of PKM2 via CARM1 and the deacetylase Sirt1. Moreover, CircHULC enhances the binding ability of TP53INP2/DOR with LC3 and LC3 with ATG4, ATG3, ATG5, ATG12. Therefore, CircHULC promotes the formation of autophagosomes. In particular, the binding ability of phosphorylated Beclin1 (Ser14) to Vps15, Vps34, ATG14L were significantly increased after CircHULC was overexpressed. Strikingly, CircHULC affects the expression of chromatin reprogramming factors and oncogenes through autophagy. Thereafter, Oct4, Sox2, KLF4, Nanog, and GADD45 were significantly decreased and C-myc was increased after CircHULC was overexpressed. Thus, CircHULC promotes the expression of H-Ras, SGK, P70S6K, 4E-BP1, Jun, and AKT. Interestingly, both CARM1 and Sirt1 determine the cancerous function of CircHULC dependent on autophagy. CONCLUSIONS: we shed light on the fact that the targeted attenuation of deregulated functioning of CircHULC could be a viable approach for cancer treatment, and CircHULC may acts as the potential biomarker and therapeutic target for liver cancer.


Assuntos
Neoplasias Hepáticas , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Cromatina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Autofagia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Instabilidade Cromossômica , Proteínas Nucleares/metabolismo
18.
Biomed Chromatogr ; 37(6): e5622, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36898359

RESUMO

Helicobacter pylori (H. pylori), as a harmful bacteria associated with gastric cancer, can have adverse effects on human normal flora and metabolism. However, the effects of H. pylori on human metabolism have not been fully elucidated. The 13 C breathing test was used as the basis for distinguishing negative and positive groups. Serum samples were collected from the two groups for targeted quantitative metabolomics detection; multidimensional statistics were used, including partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), and differential metabolites were screened. Unidimensional statistics combined with multidimensional statistics were used to further screen potential biomarkers, and finally pathway analysis was performed. SPSS 21.0 software package was used for statistical analysis of experimental data. Multivariate statistical analysis such as PLS-DA, PCA, and OPLS-DA was performed using Simca-P 13.0 to search for differential metabolites. This study confirmed that H. pylori caused significant changes in human metabolism. In this experiment, 211 metabolites were detected in the serum of the two groups. Multivariate statistical analysis showed that PCA of metabolites was not significantly different between the two groups. PLS-DA indicated that the serum of the two groups was well clustered. There were significant differences in metabolites between OPLS-DA groups. By setting the variable importance in projection (VIP) threshold as one and the corresponding P-value <0.05, a total of 40 metabolites were screened in this study. P <0.05 and ∣log2FC∣>0 (where FC is the fold change) were used together as a unidimensional statistical filter condition. The analysis found that the expression of 15 metabolites such as propionic acid, acetic acid, adipic acid increased, and the metabolism of six products such as deoxycholic acid (DCA), 4-hydroxyphenylpyruvic acid, pyruvic acid decreased. P <0.05, false discovery rate <0.5, ∣log2FC∣>1, and OPLSDA_VIP>1 were used together as a condition for filter screening potential biomarkers. Four potential biomarkers were screened, which were sebacic acid, isovaleric acid, DCA, and indole-3-carboxylic acid. Finally, the different metabolites were added to the pathway-associated metabolite sets (SMPDB) library for the corresponding pathway enrichment analysis. The significant abnormal metabolic pathways were taurine and subtaurine metabolism, tyrosine metabolism, glycolysis or gluconeogenesis, pyruvate metabolism, etc. This study shows that H. pylori has an impact on human metabolism. Not only a variety of metabolites have significant changes, but also metabolic pathways are abnormal, which may be the reason for the high risk of H. pylori causing gastric cancer.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Humanos , Espectrometria de Massas em Tandem , Metabolômica/métodos , Cromatografia Líquida , Biomarcadores , Ácido Acético
19.
Microbiome ; 11(1): 19, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721210

RESUMO

BACKGROUND: Low birth weight (LBW) is associated with intestinal inflammation and dysbiosis after birth. However, the underlying mechanism remains largely unknown. OBJECTIVE: In the present study, we aimed to investigate the metabolism, therapeutic potential, and mechanisms of action of bile acids (BAs) in LBW-induced intestinal inflammation in a piglet model. METHODS: The fecal microbiome and BA profile between LBW and normal birth weight (NBW) neonatal piglets were compared. Fecal microbiota transplantation (FMT) was employed to further confirm the linkage between microbial BA metabolism and intestinal inflammation. The therapeutic potential of ursodeoxycholic acid (UDCA), a highly differentially abundant BA between LBW and NBW piglets, in alleviating colonic inflammation was evaluated in both LBW piglets, an LBW-FMT mice model, and a DSS-induced colitis mouse model. The underlying cellular and molecular mechanisms by which UDCA suppresses intestinal inflammation were also investigated in both DSS-treated mice and a macrophage cell line. Microbiomes were analyzed by using 16S ribosomal RNA sequencing. Fecal and intestinal BA profiles were measured by using targeted BA metabolomics. Levels of farnesoid X receptor (FXR) were knocked down in J774A.1 cells with small interfering RNAs. RESULTS: We show a significant difference in both the fecal microbiome and BA profiles between LBW and normal birth weight animals in a piglet model. Transplantation of the microbiota of LBW piglets to antibiotic-treated mice leads to intestinal inflammation. Importantly, oral administration of UDCA, a major BA diminished in the intestinal tract of LBW piglets, markedly alleviates intestinal inflammation in LBW piglets, an LBW-FMT mice model, and a mouse model of colitis by inducing M2 macrophage polarization. Mechanistically, UDCA reduces inflammatory cytokine production by engaging BA receptor FXR while suppressing NF-κB activation in macrophages. CONCLUSIONS: These findings establish a causal relationship between LBW-associated intestinal abnormalities and dysbiosis, suggesting that restoring intestinal health and postnatal maldevelopment of LBW infants may be achieved by targeting intestinal microbiota and BA metabolism. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Suínos , Animais , Camundongos , Ácido Ursodesoxicólico , Peso ao Nascer , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
20.
Mol Ther Nucleic Acids ; 31: 15, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36570673

RESUMO

[This retracts the article DOI: 10.1016/j.omtn.2017.12.009.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...